Have a personal or library account? Click to login
Overview of disruptive technologies. A bibliometric approach Cover

Overview of disruptive technologies. A bibliometric approach

Open Access
|Aug 2025

References

  1. Acemoglu, D., & Restrepo, P. (2019). Artificial Intelligence, Automation, and Work. In A. Agrawal, J. Gans, & A. Goldfarb (Eds.), The Economics of Artificial Intelligence: An Agenda (pp. 175–186). University of Chicago Press. https://www.nber.org/books-and-chapters/economics-artificial-intelligence-agenda/artificial-intelligence-automation-and-work
  2. Biancolillo, I., Paletto, A., Bersier, J., Keller, M., & Romagnoli, M. (2020). A literature review on forest bioeconomy with a bibliometric network analysis. Journal of Forest Science, 66(7), 265–279. https://doi.org/10.17221/75/2020-JFS
  3. Bimbraw, K. (2015). Autonomous cars: Past, present and future: A review of the developments in the last century, the present scenario and the expected future of autonomous vehicle technology. ICINCO 2015 - 12th International Conference on Informatics in Control, Automation and Robotics, Proceedings, 1, 191–198. https://doi.org/10.5220/0005540501910198
  4. Bower, J. L., & Christensen, C. M. (1995). Disruptive technologies: catching the wave. (technological investments). Harvard Business Review, 73(1), 43–53.
  5. Christensen, C. M. (1997). The innovators dilemma: when new technologies cause great firms to fail (First Edition). Harvard Business Review Press.
  6. Danneels, E. (2004). Disruptive technology reconsidered: A critique and research agenda. Journal of Product Innovation Management, 21(4), 246–258. https://doi.org/10.1111/j.0737-6782.2004.00076.x
  7. Del Vecchio, V., & Menegoli, M. (2023). Internet of Things and Industrial Business Models: Knowledge Boundaries and Practical Implications. Proceedings of the 2023 5th Blockchain and Internet of Things Conference, 80–86. https://doi.org/10.1145/3625078.3625089
  8. Frank, M. R., Autor, D., Bessen, J. E., Brynjolfsson, E., Cebrian, M., Deming, D. J., Feldman, M., Groh, M., Lobo, J., Moro, E., Wang, D., Youn, H., & Rahwan, I. (2019). Toward understanding the impact of artificial intelligence on labor. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 6531–6539. https://doi.org/10.1073/pnas.1900949116
  9. Furness, M., Bello-Mendoza, R., Dassonvalle, J., & Chamy-Maggi, R. (2021). Building the ‘Bio-factory’: A bibliometric analysis of circular economies and Life Cycle Sustainability Assessment in wastewater treatment. Journal of Cleaner Production, 323, 129127. https://doi.org/10.1016/J.JCLEPRO.2021.129127
  10. Gans, Joshua. (2017). The disruption dilemma. The MIT Press.
  11. Goyal, S., Chauhan, S., & Mishra, P. (2021). Circular economy research: A bibliometric analysis (2000–2019) and future research insights. Journal of Cleaner Production, 287, 125011. https://doi.org/10.1016/J.JCLEPRO.2020.125011
  12. Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell, 157(6), 1262. https://doi.org/10.1016/J.CELL.2014.05.010
  13. Huang, H., Lu, J., Jin, L., & Ren, H. (2024). The Future of Environmental Engineering Technology: A Disruptive Innovation Perspective. Engineering, 41, 153–160. https://doi.org/10.1016/J.ENG.2024.06.009
  14. Huang, L., Ladikas, M., Schippl, J., He, G., & Hahn, J. (2023). Knowledge mapping of an artificial intelligence application scenario: A bibliometric analysis of the basic research of data-driven autonomous vehicles. Technology in Society, 75, 102360. https://doi.org/10.1016/J.TECHSOC.2023.102360
  15. Jacobson, M. Z., Delucchi, M. A., Bauer, Z. A. F., Goodman, S. C., Chapman, W. E., Cameron, M. A., Bozonnat, C., Chobadi, L., Clonts, H. A., Enevoldsen, P., Erwin, J. R., Fobi, S. N., Goldstrom, O. K., Hennessy, E. M., Liu, J., Lo, J., Meyer, C. B., Morris, S. B., Moy, K. R., … Yachanin, A. S. (2017). 100% Clean and Renewable Wind, Water, and Sunlight All-Sector Energy Roadmaps for 139 Countries of the World. Joule, 1(1), 108–121. https://doi.org/10.1016/j.joule.2017.07.005
  16. Jajic, I., Khawaja, S., Hussain Qureshi, F., & Pejić Bach, M. (2022). Augmented Reality in Business and Economics: Bibliometric and Topics Analysis. Interdisciplinary Description of Complex Systems, 20(6), 723–744. https://doi.org/10.7906/INDECS.20.6.5
  17. Konstantinis, A., Rozakis, S., Maria, E. A., & Shu, K. (2018). A definition of bioeconomy through the bibliometric networks of the scientific literature. AgBioForum, 21(2). https://agbioforum.org/wp-content/uploads/2021/02/AgBioForum-21-2-64.pdf
  18. Lepore, J. (2014, June 16). What the Gospel of Innovation Gets Wrong | The New Yorker. https://www.newyorker.com/magazine/2014/06/23/the-disruption-machine
  19. Li, Munan., Porter, Alan. L., & Suominen, Arho (2018). Insights into relationships between disruptive technology/innovation and emerging technology: A bibliometric perspective. Technological Forecasting and Social Change, 129, 285–296. https://doi.org/10.1016/J.TECHFORE.2017.09.032
  20. Markides, C. (2006). Disruptive innovation: In need of better theory. Journal of Product Innovation Management, 23(1), 19–25. https://doi.org/10.1111/j.1540-5885.2005.00177.x
  21. Marques, P. C., Reis, J., & Santos, R. (2023). Artificial Intelligence and Disruptive Technologies in Service Systems: A Bibliometric Analysis. International Journal of Innovation and Technology Management, 20(7). https://doi.org/10.1142/S0219877023300033
  22. Mohideen, R. (2020). Technologies “Disrupting” Gender Relations? Women and the Energy Revolution in Asia, 27–38. https://doi.org/10.1007/978-981-15-0230-9_3
  23. Mougenot, B., & Doussoulin, J. P. (2022). Conceptual evolution of the bioeconomy: a bibliometric analysis. Environment, Development and Sustainability, 24(1), 1031–1047. https://doi.org/10.1007/S10668-021-01481-2
  24. Nakamoto, S. (2008). Bitcoin: a peer-to-peer electronic cash system, October 2008. Cited On. https://www.ussc.gov/sites/default/files/pdf/training/annual-national-training-seminar/2018/Emerging_Tech_Bitcoin_Crypto.pdf
  25. Patel, R., Migliavacca, M., & Oriani, M. E. (2022). Blockchain in banking and finance: A bibliometric review. Research in International Business and Finance, 62, 101718. https://doi.org/10.1016/J.RIBAF.2022.101718
  26. Perea, L. N., Gaviria, D., & Redondo, M. I. (2020). Bioeconomy: bibliometric analysis from 2006 to 2019. Revista Espacios, 41(45). https://doi.org/10.48082/espacios-a20v41n43p02
  27. Pilkington, A., & Meredith, J. (2009). The evolution of the intellectual structure of operations management—1980–2006: A citation/co-citation analysis. Journal of Operations Management, 27(3), 185–202. https://doi.org/10.1016/J.JOM.2008.08.001
  28. Ranjbari, M., Shams Esfandabadi, Z., Quatraro, F., Vatanparast, H., Lam, S. S., Aghbashlo, M., & Tabatabaei, M. (2022). Biomass and organic waste potentials towards implementing circular bioeconomy platforms: A systematic bibliometric analysis. Fuel, 318, 123585. https://doi.org/10.1016/J.FUEL.2022.123585
  29. Reis, W. F., Barreto, C. G., & Capelari, M. G. M. (2023). Circular Economy and Solid Waste Management: Connections from a Bibliometric Analysis. Sustainability 2023, Vol. 15, Page 15715, 15(22), 15715. https://doi.org/10.3390/SU152215715
  30. Rigby, D. (2011). Marketing the Future of Shopping. Harvard Business Review 89, no. 12: 64-+. WOS:000297092400035.
  31. Rosário, A. T., & Dias, J. C. (2022). Industry 4.0 and Marketing: Towards an Integrated Future Research Agenda. Journal of Sensor and Actuator Networks 2022, Vol. 11, Page 30, 11(3), 30. https://doi.org/10.3390/JSAN11030030
  32. Schiller, D. (1999). Digital Capitalism: Networking the Global Market System. The MIT Press. https://doi.org/10.7551/mitpress/2415.001.0001
  33. Soledispa-Cañarte, B. J., Pibaque-Pionce, M. S., Merchán-Ponce, N. P., Alvarez, D. C. M., Tovar-Quintero, J., Escobar-Molina, D. F., Cedeño-Ramírez, J. D., & Rincon-Guio, C. (2023). ADVANCING AGRIBUSINESS SUSTAINABILITY AND COMPETITIVENESS THROUGH LOGISTICS 4.0: A BIBLIOMETRIC AND SYSTEMATIC LITERATURE REVIEW. Logforum, 19(1), 155–168. https://doi.org/10.17270/J.LOG.2023.807
  34. Topol, E. M. (2019). Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again. Basic Books. https://www.amazon.com/Deep-Medicine-Artificial-Intelligence-Healthcare/dp/1541644638
  35. Wang, J., Deng, H., Liu, B., Hu, A., Liang, J., Fan, L., Zheng, X., Wang, T., & Lei, J. (2020). Systematic evaluation of research progress on natural language processing in medicine over the past 20 years: Bibliometric study on pubmed. Journal of Medical Internet Research, 22(1), e16816. https://doi.org/10.2196/16816
  36. Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and Applications. In American Ethnologist (Issue 1). Cambridge University Press. https://www.asecib.ase.ro/mps/Social%20Network%20Analysis%20%5B1994%5D.pdf
  37. Webb, M. (2019). The Impact of Artificial Intelligence on the Labor Market. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.3482150
  38. Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big Data in Smart Farming – A review. Agricultural Systems, 153, 69–80. https://doi.org/10.1016/J.AGSY.2017.01.023
  39. Zhong, S., Geng, Y., Liu, W., Gao, C., & Chen, W. (2016). A bibliometric review on natural resource accounting during 1995–2014. Journal of Cleaner Production, 139, 122–132. https://doi.org/10.1016/J.JCLEPRO.2016.08.039
Language: English
Page range: 50 - 65
Published on: Aug 1, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Iulia Elena Neagoe, Alin Cristian Maricut, Giani Grădinaru, published by Bucharest University of Economic Studies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.