References
- Agarwal, S., Agarwal, B., & Gupta, R. (2022). Chatbots and virtual assistants : A bibliometric analysis. Library Hi Tech, 40(4), 1013–1030. https://doi.org/10.1108/LHT-09-2021-0330.
- Alonso-Arévalo, J., & Quinde-Cordero, M. (2023). ChatGPT : La creación automática de textos académicos con Inteligencia artificial y su impacto en la comunicación académica y educativa. Desiderata, 6(22), 136–142. https://gredos.usal.es/handle/10366/152505.
- Amoretti, M. L., & Valero, L. P. (2024). Inteligencia artificial para la producción musical (IAPM) : pedagogía y docencia a través de estrategias tecnológicas innovadoras. YUYAY : Estrategias, Metodologías & Didácticas Educativas, 3(1), 66–87. https://doi.org/10.59343/yuyay.v3i1.59.
- Arevalo Erique, M. A., Luna Alvarez, H. E., Ching Valle, J. X., & Zambrano Vera, A. M. (2023). Educación 5.0 : más que un cambio de tecnología, un paso adelante en la educación. Revista Conrado, 19(94), 384–392. https://conrado.ucf.edu.cu/index.php/conrado/article/view/3364.
- AP LBC. (2020). How can the Leisure Industry Unlock the Power of Artificial Intelligence (AI)? AP LBC. https://ap-lbc.com/how-can-the-leisure-industry-unlock-the-power-of-artificial-intelligence-ai/.
- Burton, E., Goldsmith, J., Koenig, S., Kuipers, B., Mattei, N., & Walsh, T. (2017). Ethical Considerations in Artificial Intelligence Courses. ArXiv, abs/1701.07769. https://doi.org/10.1609/aimag.v38i2.2731.
- Canto, G. Á. G., Sosa, G. W. E., Bautista, O. J., Escobar, C. J. & Santillán, F. A. (2020). Escala de Likert : Una alternativa para elaborar e interpretar un instrumento de percepción social. Revista de la alta tecnología y sociedad, 12(1), 38–45. https://acortar.link/0RmNSc.
- Chan, C. K. Y., Hu, W. (2023). Students’ voices on generative AI : perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education, 20(43), 1–18. https://doi.org/10.1186/s41239-023-00411-8.
- Crews, F., He, J., & Hodge, C. (2007). Adolescent cortical development : A critical period of vulnerability for addiction. Pharmacology Biochemistry and Behavior, 86(2), 189–199. https://doi.org/10.1016/j.pbb.2006.12.001.
- DeVellis, R. F., & Thorpe, C. T. (2021). Scale development : Theory and applications. Sage publications.
- Enrique Hevia, F. M., & Peña Alvarez, M. (2020). Improcedencias al usar la estadística en las investigaciones sociales. Varona. Revista Científico Metodológica, (70), 13–18. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1992-82382020000100013&lng=es&tlng=es.
- Etikan, I., Musa, S. A., & Alkassim, R. S. (2016). Comparison of convenience sampling and purposive sampling. American Journal of Theoretical and Applied Statistics, 5(1), 1–4. https://doi.org/10.11648/j.ajtas.20160501.11.
- Faycal, F., Riadh, J., Ibtehal, A., Fawzi, F. D., Samer, A., Radouane, S. (2023). Analyzing the students’ views, concerns, and perceived ethics about chat GPT usage. Computers and Education : Artificial Intelligence, 5, 100180. https://doi.org/10.1016/j.caeai.2023.100180.
- Foro Económico Mundial. (2024). Desbloquear el máximo potencial de la transformación digital a través de la tecnología y el talento. https://es.weforum.org/stories/2024/09/desbloquear-el-maximo-potencial-de-la-transformacion-digital-a-traves-de-la-tecnologia-y-el-talento/.
- Gubareva, R., & Lopes, R. P. (2020). Virtual Assistants for Learning : A Systematic Literature Review. CSEDU (1), 97–103. https://www.scitepress.org/Link.aspx?doi=10.5220/0009417600970103.
- Guzman, A., & Lewis, S. (2019). Artificial intelligence and communication : A Human–Machine Communication research agenda. New Media & Society, 22(1), 70–86. https://doi.org/10.1177/1461444819858691.
- Hiebl, M. R. W. (2023). Sample Selection in Systematic Literature Reviews of Management Research. Organizational Research Methods, 26(2), 229–261. https://doi.org/10.1177/1094428120986851.
- Maier, C., Thatcher, J. B., Grover, V., & Dwivedi, Y. K. (2023). Cross-sectional research : A critical perspective, use cases, and recommendations for IS research. International Journal of Information Management, 70, 102625. https://doi.org/10.1016/j.ijinfomgt.2023.102625.
- Marrone, R., Zamecnik, A., Joksimovic, S. et al. (2024). Understanding Student Perceptions of Artificial Intelligence as a Teammate. Technology, Knowledge and Learning. https://doi.org/10.1007/s10758-024-09780-z.
- McShane, B., Gal, D., Gelman, A., Robert, C., & Tackett, J. (2017). Abandon Statistical Significance. The American Statistician, 73(1), 235–245. https://doi.org/10.1080/00031305.2018.1527253.
- Mohajan, H. K. (2020). Quantitative research : A successful investigation in natural and social sciences. Journal of Economic Development, Environment and People, 9(4), 50–79. https://www.ceeol.com/search/article-detail?id=939590.
- Organización de las Naciones Unidas. (2023). Pacto Digital Global. https://www.un.org/es/summit-of-the-future/global-digital-compact.
- Parque Gyunyeol, M. B. (2022). Un estudio de caso sobre problemas actuales en inteligencia artificial y sus implicaciones éticas. Ética de la robótica y la IA, 7(2), 47–56. https://doi.org/10.22471/ai.2022.7.2.47.
- Petersen, A., Craig, M., & Denny, P. (2016). Employing Multiple-Answer Multiple Choice Questions. Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer Science Education. https://doi.org/10.1145/2899415.2925503.
- Rahman, A., & Muktadir, M. (2021). SPSS : An Imperative Quantitative Data Analysis Tool for Social Science Research. International Journal of Research and Innovation in Social Science, 5(10), 300–302. https://doi.org/10.47772/ijriss.2021.51012.
- Reindl, S. (2021). Emotion AI in Education : A Literature Review. International Journal of Learning Technology, 16(4), 288–302. https://doi.org/10.1504/IJLT.2021.121366.
- Restrepo Pineda, A. F. (2024). Conectando mentes y máquinas : neuroeducación e IA en la era del pensamiento computacional. Plumilla Educativa, 33(1), 1–15. https://doi.org/10.30554/p.e.1.5090.2024.
- Reza Flores, R. A., Reza Flores, C. M., & Zamudio Palomar, A. (2025). High School Students and Artificial Intelligence : A neuroeducational perspective on literacy and self-improvement, thinking and creativity. Journal of Neuroeducation, 5(2), 77–88. https://doi.org/10.1344/joned.v5i2.49030.
- Salloum, S. A., Alomari, K. M., Alfaisal, A. M. et al. (2025). Emotion recognition for enhanced learning : using AI to detect students’ emotions and adjust teaching methods. Smart Learning Environments, 12(21), 1–17. https://doi.org/10.1186/s40561-025-00374-5.
- Stolpe, K., & Hallström, J. (2024). Artificial intelligence literacy for technology education. Computers and Education Open, 6, 1–8. https://doi.org/10.1016/j.caeo.2024.100159.
- Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach’s alpha. International Journal of Medical Education, 2, 53–55. https://doi.org/10.5116/ijme.4dfb.8dfd.
- Trisnawati, W., Putra, R. E., & Balti, L. (2023). The Impact of Artificial Intelligent in Education toward 21st Century Skills : A Literature Review. PPSDP International Journal of Education, 2(2), 501–513. https://doi.org/10.59175/pijed.v2i2.152.
- UNESCO. (2023). Informe de Seguimiento de la Educación en el Mundo 2023 : Tecnología en la educación: ¿Una herramienta en términos de quién? Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura. https://unesdoc.unesco.org/ark:/48223/pf0000388894.
- U.S. Department of Education. (2023). Artificial intelligence and the future of teaching and learning : Insights and recommendations. Washington, DC : U.S. Department of Education. https://www2.ed.gov/documents/ai-report/ai-report.pdf.
- Vehovar, V., Toepoel, V., & Steinmetz, S. (2016) Non-Probability Sampling. In Wolf, C., Joye, D., Smith, T., & Fu, Y. C., Eds., The SAGE Handbook of Survey Methodology, SAGE Publications Ltd, New York, 329–345. https://doi.org/10.4135/9781473957893.n22.
- Zheng, J., Lajoie, S., & Li, S. (2023). Emotions in self-regulated learning : A critical literature review and meta-analysis. Frontiers in Psychology, 14, 1–13. https://doi.org/10.3389/fpsyg.2023.1137010.