Have a personal or library account? Click to login
Nowcasting Register Labour Force Participation Rates in Municipal Districts Using Survey Data Cover

Nowcasting Register Labour Force Participation Rates in Municipal Districts Using Survey Data

Open Access
|Dec 2021

References

  1. Arima, S., W.R. Bell, G.S. Datta, C. Franco, and B. Liseo. 2017. “Multivariate Fay-Herriot Bayesian estimation of small area means under functional measurement error.” <em>Journal of the Royal Statistical Society</em> Series A, 180: 1191–1209. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://cran.r-project.org/web/packages/hbsae/hbsae.pdf">https://cran.r-project.org/web/packages/hbsae/hbsae.pdf</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/rssa.12321" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/rssa.12321</a></dgdoi:pub-id>
  2. Bakker, B.F.M. 2012. “Estimating the Validity of Administrative Variables.” <em>Statistica Neerlandica</em>, 66: 8–17. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1467-9574.2011.00504.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1467-9574.2011.00504.x</a>">https://doi.org/10.1111/j.1467-9574.2011.00504.x</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/j.1467-9574.2011.00504.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1467-9574.2011.00504.x</a></dgdoi:pub-id>
  3. Battese, G.E., R.M. Harter, and W.A. Fuller. 1988. “An error components model for prediction of county crop areas using survey and satellite data.” <em>Journal of the American Statistical Association</em>. 83: 28–36. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2307/2288915" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2307/2288915</a>">https://doi.org/10.2307/2288915</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2307/2288915" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2307/2288915</a></dgdoi:pub-id>
  4. Bell, W.R., H.C. Chung, G.S. Datta, and C. Franco. 2019. “Measurement error in small area estimation: Functional versus structural versus naïve models.” <em>Survey Methodology</em> 45: 61–80. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www150.statcan.gc.ca/n1/pub/12-001-x/2019001/article/00005-eng.htm">https://www150.statcan.gc.ca/n1/pub/12-001-x/2019001/article/00005-eng.htm</ext-link> (accessed August 2020).
  5. Bijlsma, I., J.A. van den Brakel, R. van der Velden, and J. Allen. 2020. “Estimating literacy levels at a detailed regional level; An application using Dutch data.” <em>Journal of Official Statistics,</em> 36: 251–274. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://dx.doi.org/<a href="https://doi.org/10.2478/JOS-2020-0014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/JOS-2020-0014</a>">http://dx.doi.org/<a href="https://doi.org/10.2478/JOS-2020-0014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/JOS-2020-0014</a></ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/jos-2020-0014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/jos-2020-0014</a></dgdoi:pub-id>
  6. Blight, B.J.N., and A.J. Scott. 1973. “A stochastic model for repeated surveys.” <em>Journal of the Royal Statistical Society</em> Series B, 35: 61–66. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.2517-6161.1973.tb00936.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.2517-6161.1973.tb00936.x</a>">https://doi.org/10.1111/j.2517-6161.1973.tb00936.x</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/j.2517-6161.1973.tb00936.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.2517-6161.1973.tb00936.x</a></dgdoi:pub-id>
  7. Bollineni-Balabay, O., J.A. van den Brakel, and F. Palm. 2017. “State space time series modelling of the Dutch Labour Force Survey: Model selection and mean squared error estimation.” <em>Survey Methodology,</em> 43: 41–67. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.statcan.gc.ca/pub/12-001-x/2017001/article/14819-eng.htm">http://www.statcan.gc.ca/pub/12-001-x/2017001/article/14819-eng.htm</ext-link> (accessed November 2019).
  8. Boonstra, H.J. 2012. hbsae: Hierarchical Bayesian Small Area Estimation.R package version 1.0. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://cran.r-project.org/web/packages/hbsae/hbsae.pdf">https://cran.r-project.org/web/packages/hbsae/hbsae.pdf</ext-link> (accessed February 2020).<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.32614/CRAN.package.hbsae" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.32614/CRAN.package.hbsae</a></dgdoi:pub-id>
  9. Boonstra, H.J. and J.A. van den Brakel. 2019. “Estimation of level and change for unemployment using structural time series models.” <em>Survey Methodology</em>, 45: 395 – 425. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.statcan.gc.ca/pub/12-001-x/2019003/article/00005-eng.htm">http://www.statcan.gc.ca/pub/12-001-x/2019003/article/00005-eng.htm</ext-link> (accessed February 2020).
  10. Boonstra, H.J., J.A. van den Brakel, B. Buelens, S. Krieg, and M. Smeets. 2008. “Towards small area estimation at Statistics Netherlands.” <em>Metron</em>, LXVI (1): 21-49.
  11. Boonstra, H.J., B. Buelens, and M. Smeets. 2007. <em>Estimation of municipal unemployment fractions – a simulation study comparing different small area estimators</em>. Technical report, BPA-no. DMH-2007-04-20-HBTA, Statistics Netherlands, Heerlen. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.google.com/url?sa=t&amp;rct=j&amp;q=&amp;esrc=s&amp;source=web&amp;cd=&amp;cad=rja&amp;uact=8&amp;ved=2ahUKEwjgldbMivrzAhVKDuwKHW-jCQEQFnoECAoQAQ&amp;url=https%3A%2F%2Fwww.cbs.nl%2F-%2Fmedia%2Fimported%2Fdocuments%2F2011%2F02%2F2011-x10-02.pdf%3Fla%3Dnl-nl&amp;usg=AOvVaw3n58-noqm4X0g4z5v28QSL">https://www.google.com/url?sa=t&amp;rct=j&amp;q=&amp;esrc=s&amp;source=web&amp;cd=&amp;cad=rja&amp;uact=8&amp;ved=2ahUKEwjgldbMivrzAhVKDuwKHW-jCQEQFnoECAoQAQ&amp;url=https%3A%2F%2Fwww.cbs.nl%2F-%2Fmedia%2Fimported%2Fdocuments%2F2011%2F02%2F2011-x10-02.pdf%3Fla%3Dnl-nl&amp;usg=AOvVaw3n58-noqm4X0g4z5v28QSL</ext-link> (accessed June 2020).
  12. Boonstra, H.J., B. Buelens, K. Leufkens, and M. Smeets. 2011. <em>Small area estimates of labour status in Dutch municipalities</em>. Technical Report 201102, Statistics Netherlands.
  13. CBS Statline (2017). Statline statistical database: Avaliable at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://opendata.cbs.nl/statline/#/CBS/nl/dataset/83524NEDtable?dl=40C7/">https://opendata.cbs.nl/statline/#/CBS/nl/dataset/83524NEDtable?dl=40C7/</ext-link> (accessed November 2021).
  14. Choi, H., and H. Varian. 2012. “Predicting the Present with Google Trends.” <em>Economic Record</em> 88 Supplement s1: 2–9. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1475-4932.2012.00809.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1475-4932.2012.00809.x</a>">https://doi.org/10.1111/j.1475-4932.2012.00809.x</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/j.1475-4932.2012.00809.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1475-4932.2012.00809.x</a></dgdoi:pub-id>
  15. Cochran, W. 1977. <em>Sampling Theory</em>. New York: John Wiley &amp; Sons, Inc.
  16. Daas, P., and M. Puts. 2014. “Big data as a source of statistical information.” <em>The Survey Statistician,</em> 69: 22–31. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://isi-iass.org/home/wp-content/uploads/n69-2014-01-issn.pdf">http://isi-iass.org/home/wp-content/uploads/n69-2014-01-issn.pdf</ext-link> (accessed November 2019).
  17. Datta, G.S., and M. Ghosh. 1991. “Bayesian Prediction in Linear Models: Applications to Small Area Estimation.” <em>The Annals of Statistics</em>, 19(4): 1748–1770. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1214/aos/1176348369" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1214/aos/1176348369</a>">https://doi.org/10.1214/aos/1176348369</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1214/aos/1176348369" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1214/aos/1176348369</a></dgdoi:pub-id>
  18. Datta, G., P. Lahiri, T. Maiti, and K. Lu. 1999. “Hierarchical Bayes estimation of unemployment rates for the states of the U.S.” <em>Journal of the American Statistical Association</em> 94: 1074–1082. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2307/2669921" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2307/2669921</a>">https://doi.org/10.2307/2669921</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2307/2669921" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2307/2669921</a></dgdoi:pub-id>
  19. Doornik, J.A. 2009. <em>An Object-oriented Matrix Programming Language Ox 6</em>. London: Timberlake Consultants Press.
  20. Durbin, J., and S.J. Koopman. 2012. <em>Time Series Analysis by State Space Methods</em> (2nd edition). Oxford: Oxford University Press.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1093/acprof:oso/9780199641178.001.0001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/acprof:oso/9780199641178.001.0001</a></dgdoi:pub-id>
  21. Fay, R.E., and R.A. Herriot. 1979. “Estimates of income for small places: an application of James-Stein procedures to Census data.” <em>Journal of the American Statistical Association</em> 74: 269–277. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/01621459.1979.10482505" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/01621459.1979.10482505</a>">https://doi.org/10.1080/01621459.1979.10482505</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/01621459.1979.10482505" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/01621459.1979.10482505</a></dgdoi:pub-id>
  22. Giannone, D., L. Reichlin, and D. Small. 2008. “Nowcasting: The real-time informational content of macroeconomic data.” <em>Journal of Monetary Economics</em> 55: 665–676. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jmoneco.2008.05.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jmoneco.2008.05.010</a>">https://doi.org/10.1016/j.jmoneco.2008.05.010</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.jmoneco.2008.05.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jmoneco.2008.05.010</a></dgdoi:pub-id>
  23. Hand, D. 2018. “Statistical challenges of administrative and transaction data.” <em>Journal of the Royal Statistical Society</em> series A, 181: 1–51. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/rssa.12315" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/rssa.12315</a>">https://doi.org/10.1111/rssa.12315</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/rssa.12315" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/rssa.12315</a></dgdoi:pub-id>
  24. Harvey, A.C. 1989. <em>Forecasting, Structural Time Series Models and the Kalman Filter.</em> Cambridge: Cambridge University Press.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1017/CBO9781107049994" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/CBO9781107049994</a></dgdoi:pub-id>
  25. Harvey, A.C., and C.H. Chung. 2000. “Estimating the underlying change in unemployment in the UK.” <em>Journal of the Royal Statistical Society</em> Series A, 163: 303–339. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/1467-985X.00171" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/1467-985X.00171</a>">https://doi.org/10.1111/1467-985X.00171</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/1467-985X.00171" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/1467-985X.00171</a></dgdoi:pub-id>
  26. Hobza, T., and D. Morales. 2016. “Empirical best prediction under unit-level logit mixed models.” <em>Journal of Official Statistics</em>, 32: 661–692. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1515/jos-2016-0034" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1515/jos-2016-0034</a>">https://doi.org/10.1515/jos-2016-0034</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1515/jos-2016-0034" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/jos-2016-0034</a></dgdoi:pub-id>
  27. Hobza, T., D. Morales, and L. Santamaria. 2018. “Small area estimation of poverty proportions under unit-level temporal binomial-logit mixed models.” <em>TEST,</em> 27: 270–294. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s11749-017-0545-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11749-017-0545-3</a>">https://doi.org/10.1007/s11749-017-0545-3</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s11749-017-0545-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11749-017-0545-3</a></dgdoi:pub-id>
  28. Koopman, S.J., A.C. Harvey, J.A. Doornik, and N. Shephard. 2007. <em>STAMP8: Structural Time Series Analyser, Modeller and Predictor</em>. London: Timberlake.
  29. Koopman, S.J., N. Shephard, and J.A. Doornik. 2008. <em>SsfPack 3.0: Statistical Algorithms for Models in State Space Form</em>, London: Timberlake Consultants Press.
  30. MacGibbon, B., and T.J. Tomberlin. 1989. “Small Area Estimates of Proportions via Empirical Bayes Techniques.” <em>Survey Methodology</em>, 15: 237–252. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www150.statcan.gc.ca/n1/pub/12-001-x/1989002/article/14565-eng.pdf">https://www150.statcan.gc.ca/n1/pub/12-001-x/1989002/article/14565-eng.pdf</ext-link> (accessed August 2021).
  31. Malec, D., J. Sedransk, C.L. Moriarity, and F.B. Leclere. 1997. “Small Area Inference for Binary Variables in the National Health Interview Survey.” <em>Journal of the American Statistical Association</em>, 92: 815–826. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/01621459.1997.10474037" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/01621459.1997.10474037</a>">https://doi.org/10.1080/01621459.1997.10474037</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/01621459.1997.10474037" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/01621459.1997.10474037</a></dgdoi:pub-id>
  32. Marino, M.F., M.G. Ranalli, N. Salvati, and M. Alfo. 2019. “Semiparametric empirical best prediction for small area estimation of unemployment indicators.” <em>The Annals of Applied Statistics</em>, 13: 1166–1197. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1214/18-AOAS1226" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1214/18-AOAS1226</a>">https://doi.org/10.1214/18-AOAS1226</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1214/18-AOAS1226" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1214/18-AOAS1226</a></dgdoi:pub-id>
  33. Pfeffermann, D. 2002. “Small area estimation – new developments and directions.” <em>International Statistical Review</em> 70: 125–143. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1751-5823.2002.tb00352.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1751-5823.2002.tb00352.x</a>">https://doi.org/10.1111/j.1751-5823.2002.tb00352.x</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/j.1751-5823.2002.tb00352.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1751-5823.2002.tb00352.x</a></dgdoi:pub-id>
  34. Pfeffermann, D. 2013. “New important developments in small area estimation.” <em>Statistical Science</em> 28: 40–68. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1214/12-STS395" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1214/12-STS395</a>">https://doi.org/10.1214/12-STS395</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1214/12-STS395" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1214/12-STS395</a></dgdoi:pub-id>
  35. Pfeffermann, D., and L. Burck. 1990. “Robust Small Area Estimation combining Time Series and Cross-sectional Data.” <em>Survey Methodology</em>, 16: 217–237. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www150.statcan.gc.ca/n1/en/pub/12-001-x/1990002/article/14534-eng.pdf?st=pRQklC03">https://www150.statcan.gc.ca/n1/en/pub/12-001-x/1990002/article/14534-eng.pdf?st=pRQklC03</ext-link> (accessed October 2019).
  36. Pfeffermann, D., J.L. Eltinge, and L.D. Brown. 2015. “Methodological issues and challenges in the production of official statistics.” <em>Journal of Survey Statistics and Methodology</em> 3: 425–483. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1093/jssam/smv035" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/jssam/smv035</a>">https://doi.org/10.1093/jssam/smv035</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1093/jssam/smv035" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/jssam/smv035</a></dgdoi:pub-id>
  37. Pfeffermann, D., and R. Tiller. 2005. “Bootstrap approximation to prediction MSE for state-space models with estimated parameters.” <em>Journal of Time Series Analysis,</em> 26: 893-916. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1467-9892.2005.00448.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1467-9892.2005.00448.x</a>">https://doi.org/10.1111/j.1467-9892.2005.00448.x</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/j.1467-9892.2005.00448.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1467-9892.2005.00448.x</a></dgdoi:pub-id>
  38. Pfeffermann, D., and R. Tiller. 2006. “Small area estimation with state space models subject to benchmark constraints.” <em>Journal of the American Statistical Association</em> 101: 1387–1397. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1198/016214506000000591" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1198/016214506000000591</a>">https://doi.org/10.1198/016214506000000591</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1198/016214506000000591" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1198/016214506000000591</a></dgdoi:pub-id>
  39. Rao, J.N.K., and I. Molina. 2015. <em>Small Area Estimation</em>, second edition. New York: John Wiley &amp; Sons.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1002/9781118735855" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/9781118735855</a></dgdoi:pub-id>
  40. Rao, J.N.K., and M. Yu. 1994. “Small area estimation by combining time-series and cross-sectional data.” <em>The Canadian Journal of Statistics</em> 22: 511–528. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2307/3315407" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2307/3315407</a>">https://doi.org/10.2307/3315407</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2307/3315407" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2307/3315407</a></dgdoi:pub-id>
  41. Särndal, C.-E., B. Swensson, and J. Wretman. 1992. <em>Model Assisted Survey Sampling</em>. New-York: Springer-Verlag.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-1-4612-4378-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-1-4612-4378-6</a></dgdoi:pub-id>
  42. Van den Brakel, J.A., E. Söhler, P. Daas, and B. Buelens. 2017. “Social media as a data source for official statistics; the Dutch Consumer Confidence Index.” <em>Survey Methodology</em> 43: 183–210. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.statcan.gc.ca/pub/12-001-x/2017002/article/54871-eng.htm">http://www.statcan.gc.ca/pub/12-001-x/2017002/article/54871-eng.htm</ext-link> (accessed October 2019).
  43. Van den Brakel, J.A., and S. Krieg. 2015. “Dealing with small sample sizes, rotation group bias and discontinuities in a rotating panel design.” <em>Survey Methodology</em> 41: 267–296. Available at <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.statcan.gc.ca/pub/12-001-x/2015002/article/14231-eng.pdf">http://www.statcan.gc.ca/pub/12-001-x/2015002/article/14231-eng.pdf</ext-link> (accessed November 2019).
  44. Van den Brakel, J.A., and S. Krieg. 2016. “Small area estimation with state-space common factor models for rotating panels.” <em>Journal of the Royal Statistical Society</em> Series A. 179: 763–791. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/rssa.12158" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/rssa.12158</a>">https://doi.org/10.1111/rssa.12158</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/rssa.12158" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/rssa.12158</a></dgdoi:pub-id>
  45. Vosen, M., and T. Schmidt. 2011. “Forecasting private consumption: survey-based indicators vs. Google trends.” <em>Journal of Forecasting</em> 30: 565–578. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/for.1213" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/for.1213</a>">https://doi.org/10.1002/for.1213</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1002/for.1213" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/for.1213</a></dgdoi:pub-id>
  46. Wallgren, A., and B. Wallgren. 2007. <em>Register-based statistics; Administrative data for statistical purposes</em>. John Wiley &amp; Sons, West Sussex.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1002/9780470061350" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/9780470061350</a></dgdoi:pub-id>
  47. Ybarra, L.M.R., and S.L. Lohr. 2008. “Small area estimation when auxiliary information is measured with error.” <em>Biometrika</em> 95: 919–931. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1093/biomet/asn048" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/biomet/asn048</a>">https://doi.org/10.1093/biomet/asn048</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1093/biomet/asn048" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/biomet/asn048</a></dgdoi:pub-id>
  48. You, Y., J. Rao, and J. Gambino. 2003. “Model-based unemployment rate estimation for the Canadian Labour Force Survey: A hierarchical Bayes approach.” <em>Survey Methodology</em> 29: 25–32. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www150.statcan.gc.ca/n1/pub/12-001-x/2003001/article/6602-eng.pdf">https://www150.statcan.gc.ca/n1/pub/12-001-x/2003001/article/6602-eng.pdf</ext-link> (accessed November 2019).
Language: English
Page range: 1009 - 1045
Submitted on: Mar 1, 2020
Accepted on: Apr 1, 2021
Published on: Dec 26, 2021
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Jan van den Brakel, John Michiels, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.