Have a personal or library account? Click to login
Robust Estimation of the Theil Index and the Gini Coeffient for Small Areas Cover

Robust Estimation of the Theil Index and the Gini Coeffient for Small Areas

Open Access
|Dec 2021

References

  1. Alfons, A. and M. Templ. 2013. “Estimation of social exclusion indicators from complex surveys: The r package laeken.” <em>Journalof Statistical Software</em> 54 (15): 1–25. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.18637/jss.v054.i15" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.18637/jss.v054.i15</a>">https://doi.org/10.18637/jss.v054.i15</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.18637/jss.v054.i15" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.18637/jss.v054.i15</a></dgdoi:pub-id>
  2. Battacharya, D. 2007. “Inference on inequality from household survey data.” <em>Journal of Econometrics</em> 137: 674–707. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jeconom.2005.09.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jeconom.2005.09.003</a>">https://doi.org/10.1016/j.jeconom.2005.09.003</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.jeconom.2005.09.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jeconom.2005.09.003</a></dgdoi:pub-id>
  3. Bianchi, A., E. Fabrizi, N. Salvati, and N. Tzavidis. 2018. “Estimation and testing in m-quantile regression with applications to small area estimation.” <em>International Statistical Review</em> 86 (3): 541–570. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/insr.12267" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/insr.12267</a>">https://doi.org/10.1111/insr.12267</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/insr.12267" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/insr.12267</a></dgdoi:pub-id>
  4. Bourguignon, F. 1979. “Decomposable income inequality measures.” <em>Econometrica</em> 42: 27–41. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2307/1914138" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2307/1914138</a>">https://doi.org/10.2307/1914138</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2307/1914138" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2307/1914138</a></dgdoi:pub-id>
  5. Box, G., and D. Cox. 1964. “An analysis of transformations.” <em>Journal of the Royal Statistical Society Series B</em> 27 (2): 211–252. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.2517-6161.1964.tb00553.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.2517-6161.1964.tb00553.x</a>">https://doi.org/10.1111/j.2517-6161.1964.tb00553.x</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/j.2517-6161.1964.tb00553.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.2517-6161.1964.tb00553.x</a></dgdoi:pub-id>
  6. Breckling, J., and R. Chambers. 1988. “M-quantiles.” <em>Biometrika</em> 75 (4): 761–771. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1093/biomet/75.4.761" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/biomet/75.4.761</a>">https://doi.org/10.1093/biomet/75.4.761</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1093/biomet/75.4.761" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/biomet/75.4.761</a></dgdoi:pub-id>
  7. Chambers, R.L. 1986. “Outlier robust finite population estimation.” <em>Journal of the American Statistical Associationtion</em> 81 (396): 1063–1069. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/rssb.12019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/rssb.12019</a>">https://doi.org/10.1111/rssb.12019</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/rssb.12019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/rssb.12019</a></dgdoi:pub-id>
  8. Chambers, R., H. Chandra, N. Salvati, and N. Tzavidis. 2014. “Outlier robust small area estimation.” <em>Journal of the Royal Statistical Society Series B</em> 76 (1): 47–69. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/rssb.12019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/rssb.12019</a>">https://doi.org/10.1111/rssb.12019</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/rssb.12019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/rssb.12019</a></dgdoi:pub-id>
  9. Chambers, R., and Dunstan. 1986. “Estimating distribution function from survey data.” <em>Biometrika</em> 73: 597–604. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1093/biomet/73.3.597" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/biomet/73.3.597</a>">https://doi.org/10.1093/biomet/73.3.597</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1093/biomet/73.3.597" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/biomet/73.3.597</a></dgdoi:pub-id>
  10. Chambers, R., and N. Tzavidis. 2006. “M-quantile models for small area estimation.” <em>Biometrika</em> 93 (2): 255–268. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1093/biomet/93.2.255" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/biomet/93.2.255</a>">https://doi.org/10.1093/biomet/93.2.255</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1093/biomet/93.2.255" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/biomet/93.2.255</a></dgdoi:pub-id>
  11. Cowell, F., and K. Kuga. 1981. “Inequality measurement: An axiomatic approach.” <em>Journal of Economic Theory</em> 15: 287–305. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0014-2921(81)80003-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0014-2921(81)80003-7</a>">https://doi.org/10.1016/S0014-2921(81)80003-7</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0014-2921(81)80003-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0014-2921(81)80003-7</a></dgdoi:pub-id>
  12. Davidson, R. 2009. “Reliable inference for the gini index.” <em>Journal of Econometrics</em> 150: 30–40. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jeconom.2008.11.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jeconom.2008.11.004</a>">https://doi.org/10.1016/j.jeconom.2008.11.004</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.jeconom.2008.11.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jeconom.2008.11.004</a></dgdoi:pub-id>
  13. Davidson, R., and E. Flachaire. 2007. “Asymptotic and bootstrap inference for inequality and poverty measures.” <em>Journal of Econometrics</em> 141 (1): 141–66. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jeconom.2007.01.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jeconom.2007.01.009</a>">https://doi.org/10.1016/j.jeconom.2007.01.009</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.jeconom.2007.01.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jeconom.2007.01.009</a></dgdoi:pub-id>
  14. Deltas, G. 2003. “The small-samples bias of the gini coefficient: results and implications for empirical research.” <em>The Review of Economics and Statistics</em> 85: 226–34. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1162/rest.2003.85.1.226" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1162/rest.2003.85.1.226</a>">https://doi.org/10.1162/rest.2003.85.1.226</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1162/rest.2003.85.1.226" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1162/rest.2003.85.1.226</a></dgdoi:pub-id>
  15. Diallo, M.S., and J.N.K. Rao. 2018. “Small area estimation of complex parameters under unit-level models with skew-normal errors.” <em>Scandinavian Journal of Statistics</em> 45 (4): 1092–1116. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/sjos.12336" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/sjos.12336</a>">https://doi.org/10.1111/sjos.12336</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/sjos.12336" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/sjos.12336</a></dgdoi:pub-id>
  16. Dongomo-Jiongo, V., and P. Nguimkeu. 2018. <em>Bootstrapping mean squared errors of robust small-area estimators: Application to the method-of-payments data.</em> Technical report, Staff Working Paper: 18–28, Bank of Canada. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.bankofcanada.ca/wp-content/uploads/2018/06/swp2018-28.pdf">https://www.bankofcanada.ca/wp-content/uploads/2018/06/swp2018-28.pdf</ext-link>. (accessed November 2021).
  17. Elbers, C., J.O. Lanjouw, and P. Lanjouw. 2003. “Micro-level estimation of poverty and inequality.” <em>Econometrica</em> 71 (1): 355–364. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.jstor.org/stable/3082050">https://www.jstor.org/stable/3082050</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/1468-0262.00399" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/1468-0262.00399</a></dgdoi:pub-id>
  18. Elbers, C., and R. van der Weide. 2014. <em>Estimation of Normal Mixtures in a Nested Error Model with an Application to Small Area Estimation of Poverty and Inequality.</em> The World Bank. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://openknowledge.worldbank.org/handle/10986/19362">https://openknowledge.worldbank.org/handle/10986/19362</ext-link>. (accessed November 2021).<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1596/1813-9450-6962" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1596/1813-9450-6962</a></dgdoi:pub-id>
  19. Foster, J. 1983. “An axiomatic characteriazation of the Theil measure of income inequality.” <em>Journal of Economic Theory</em> 31: 105–121. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/0022-0531(83)90023-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/0022-0531(83)90023-6</a>">https://doi.org/10.1016/0022-0531(83)90023-6</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/0022-0531(83)90023-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0022-0531(83)90023-6</a></dgdoi:pub-id>
  20. Foster, J., J. Greer, and E. Thorbecke. 1984. “A class of decomposable poverty measures.” <em>Econometrica</em> 52: 761–766. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2307/1913475" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2307/1913475</a>">https://doi.org/10.2307/1913475</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2307/1913475" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2307/1913475</a></dgdoi:pub-id>
  21. Gershunskaya, J., and P. Lahiri. 2010. “Robust small area estimation using a mixture model.” In Proceedings of the Joint Statistical Meeting 2010, 1 July to 5 August 2010, Vancouver, British Columbia, Canada. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://ww2.amstat.org/meetings/jsm/2010/onlineprogram/AbstractDetails.cfm?abstractid=307425">https://ww2.amstat.org/meetings/jsm/2010/onlineprogram/AbstractDetails.cfm?abstractid=307425</ext-link> (accessed November 2021).
  22. Gini, C. 1914. “Sulla misura della concentrazione e della variabilita‘ dei caratteri.” In <em>Atti del Regio Istituto Veneto di Scienze Lettere ed Arti</em>. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.hetweb-site.net/het/texts/gini/gini_1914.pdf">https://www.hetweb-site.net/het/texts/gini/gini_1914.pdf</ext-link>.
  23. Graf, M., J.M. Marín, and I. Molina. 2019. “A generalized mixed model for skewed distributions applied to small area estimation.” <em>TEST</em> 28 (2): 565–597. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s11749-018-0594-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11749-018-0594-2</a>">https://doi.org/10.1007/s11749-018-0594-2</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s11749-018-0594-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11749-018-0594-2</a></dgdoi:pub-id>
  24. Istat Siqual. 2008. “Information on EU-SILC survey.” Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://siqual.istat.it/SIQual/visualizza.do?id=5000170&amp;refresh=true&amp;language=IT">http://siqual.istat.it/SIQual/visualizza.do?id=5000170&amp;refresh=true&amp;language=IT</ext-link>.
  25. Istat. 2017. “Occupati e disoccupati.” Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.istat.it/it/files/2017/07/CS_Occupati-e-disoccupati_giugno_2017.pdf">https://www.istat.it/it/files/2017/07/CS_Occupati-e-disoccupati_giugno_2017.pdf</ext-link>.
  26. Kreutzmann, A.-K., S. Pannier, N. Rojas-Perilla, T. Schmid, M. Templ, and N. Tzavidis. 2019. “The R package emdi for estimating and mapping regionally disaggregated indicators.” <em>Journal of Statistical Software</em> 91 (7): 1–33. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.17169/refubium-25826" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.17169/refubium-25826</a>">https://doi.org/10.17169/refubium-25826</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.18637/jss.v091.i07" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.18637/jss.v091.i07</a></dgdoi:pub-id>
  27. Langel, M., and Y. Tillè. 2013. “Variance estimation of the gini index: revisiting a result several time published.” <em>Journal of the Royal Statistical Society A</em> 7: 521–40. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1467-985X.2012.01048.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1467-985X.2012.01048.x</a>">https://doi.org/10.1111/j.1467-985X.2012.01048.x</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/j.1467-985X.2012.01048.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1467-985X.2012.01048.x</a></dgdoi:pub-id>
  28. Lombardía, M., W. González-Manteiga, and J. Prada-Sánchez 2003. “Bootstrapping the chambers-dunstan estimate of finite population distribution function.” <em>Journal of Statistical Planning and Inference</em> 116: 367–388. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0378-3758(02)00240-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0378-3758(02)00240-9</a>">https://doi.org/10.1016/S0378-3758(02)00240-9</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0378-3758(02)00240-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0378-3758(02)00240-9</a></dgdoi:pub-id>
  29. Maasoumi, E. 1986. “The measurement and decomposition of multi-dimensional inequality.” <em>Econometrica</em> 54: 991–97. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2307/1912849" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2307/1912849</a>">https://doi.org/10.2307/1912849</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2307/1912849" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2307/1912849</a></dgdoi:pub-id>
  30. Marchetti, S., N. Tzavidis, and M. Pratesi. 2012. “Non-parametric bootstrap mean squared error estimation for m-quantile estimators of small area averages, quantiles and poverty indicators.” <em>Computational Statistics and Data Analysis</em> 56 (10): 2889–2902. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.csda.2012.01.023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.csda.2012.01.023</a>">https://doi.org/10.1016/j.csda.2012.01.023</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.csda.2012.01.023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.csda.2012.01.023</a></dgdoi:pub-id>
  31. Mills, J., and S. Zandvakili. 1997. “Statistical inference via bootstrapping for measures of inequality.” <em>Journal of Applied Econometrics</em> 12 (2): 133–50. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/(SICI)1099-1255(199703)12:2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/(SICI)1099-1255(199703)12:2</a>,133::AID-JAE433.3.0.CO;2-H">https://doi.org/10.1002/(SICI)1099-1255(199703)12:2,133::AID-JAE433.3.0.CO;2-H</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1002/(SICI)1099-1255(199703)12:2&lt" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/(SICI)1099-1255(199703)12:2&lt</a>;133::AID-JAE433&gt;3.0.CO;2-H</dgdoi:pub-id>
  32. Molina, I., and J. Rao. 2010. “Small area estimation of poverty indicators.” <em>Canadian Journal of Statistics</em> 38 (3): 369–385. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/cjs.10051" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/cjs.10051</a>">https://doi.org/10.1002/cjs.10051</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1002/cjs.10051" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/cjs.10051</a></dgdoi:pub-id>
  33. R Development Core Team. 2013. R: <em>A Language and Environment for Statistical Computing.</em> Vienna, Austria: R Foundation for Statistical Computing. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.yumpu.com/en/document/view/6853895/r-a-language-and-environment-for-statistical-computing">https://www.yumpu.com/en/document/view/6853895/r-a-language-and-environment-for-statistical-computing</ext-link>. (accessed November 2021).
  34. Rao, J., and I. Molina. 2015. <em>Small Area Estimation</em>. Wiley Series in Survey Methodology. Wiley.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1002/9781118735855" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/9781118735855</a></dgdoi:pub-id>
  35. Rojas-Perilla, N., S. Pannier, T. Schmid, and N. Tzavidis. 2020. “Data-driven transformations in small area estimation.” <em>Journal of the Royal Statistical</em> Series A 183 (1): 121–148. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/rssa.12488" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/rssa.12488</a>">https://doi.org/10.1111/rssa.12488</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/rssa.12488" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/rssa.12488</a></dgdoi:pub-id>
  36. SAMPLE (Small Area Methods for Poverty and Living Conditions). Project founded by the 7th Framwork Programme of the EU. Grant SSH - CT - 2007 – 217565. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.sample-project.eu">http://www.sample-project.eu</ext-link>.
  37. Schmid, T., N. Tzavidis, R. Münnich, and R.L. Chambers. 2016. “Outlier robust small area estimation under spatial correlation.” <em>Scandinavian Journal of Statistics</em> 43 (3): 806–826. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/sjos.12205" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/sjos.12205</a>">https://doi.org/10.1111/sjos.12205</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/sjos.12205" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/sjos.12205</a></dgdoi:pub-id>
  38. Shapiro, S., and M. Wilk. 1965. “An analysis of variance test for normality (complete samples).” <em>Biometrika</em> 67: 215–216. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2307/2333709" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2307/2333709</a>">https://doi.org/10.2307/2333709</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2307/2333709" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2307/2333709</a></dgdoi:pub-id>
  39. Shorrocks, A. 1980. “The class of additively decomposable inequality measures.” <em>Econometrica</em> 48: 613–625. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2307/1913126" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2307/1913126</a>">https://doi.org/10.2307/1913126</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2307/1913126" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2307/1913126</a></dgdoi:pub-id>
  40. Sinha, S., and J. Rao. 2009. “Robust small area estimation.” <em>The Canadian Journal of Statistics</em> 37 (3): 381–399. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/cjs.10029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/cjs.10029</a>">https://doi.org/10.1002/cjs.10029</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1002/cjs.10029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/cjs.10029</a></dgdoi:pub-id>
  41. Theil, H. 1967. <em>Economics and Information Theory</em>. Chicago: Rand McNally and Company.
  42. Tzavidis, N., S. Marchetti, and R. Chambers. 2010. “Robust estimation of small area means and quantiles.” <em>Australian and New Zeland Journal of Statistics</em> 52 (2): 167–186. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1467-842X.2010.00572.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1467-842X.2010.00572.x</a>">https://doi.org/10.1111/j.1467-842X.2010.00572.x</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/j.1467-842X.2010.00572.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1467-842X.2010.00572.x</a></dgdoi:pub-id>
  43. Tzavidis, N., L.-C. Zhang, A. Luna, T. Schmid, and N. Rojas-Perilla. 2018. “From start to finish: a framework for the production of small area official statistics.” <em>Journal of the Royal Statistical Society Series A</em> 181 (4): 927–979. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/rssa.12364" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/rssa.12364</a>">https://doi.org/10.1111/rssa.12364</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/rssa.12364" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/rssa.12364</a></dgdoi:pub-id>
  44. Wu, C., and R. Sitter. 2001. “Variance estimator for the finite population distribution function with complete auxiliary information.” <em>The Canadian Journal of Statistics</em> 29. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2307/3316078" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2307/3316078</a>">https://doi.org/10.2307/3316078</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2307/3316078" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2307/3316078</a></dgdoi:pub-id>
  45. Zenga, M. 2007. “Inequality curve and inequality index based on the ratios between lower and upper arithmetic means.” <em>Statistica e Applicazioni</em> 4: 3–27. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1400/209575" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1400/209575</a>">https://doi.org/10.1400/209575</ext-link>.
Language: English
Page range: 955 - 979
Submitted on: Oct 1, 2019
Accepted on: Jan 1, 2021
Published on: Dec 26, 2021
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Stefano Marchetti, Nikos Tzavidis, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.