Have a personal or library account? Click to login
Combining Cluster Sampling and Link-Tracing Sampling to Estimate Totals and Means of Hidden Populations in Presence of Heterogeneous Probabilities of Links Cover

Combining Cluster Sampling and Link-Tracing Sampling to Estimate Totals and Means of Hidden Populations in Presence of Heterogeneous Probabilities of Links

Open Access
|Dec 2021

References

  1. Abramowitz, M., and I.A. Stegun. 1964. <em>Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables</em>. Ninth Dover printing, tenth GPO printing. New York: Dover.
  2. Bernard, H.R., T. Hallett, A. Iovita, E.C. Johnsen, R. Lyerla, C. McCarty, M. Mahy, M.J. Salganik, T. Saliuk, O. Scutelniciuc, G.A. Shelley, P. Sirinirund, S. Weir, and D.F. Stroup. 2010. “Counting hard-to-count populations: The network scale-up method for public health.” <em>Sexually Transmitted Infections</em> 86 (Suppl. 2): 11–15. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://dx.doi.org/<a href="https://doi.org/10.1136/sti.2010.044446" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1136/sti.2010.044446</a>">http://dx.doi.org/<a href="https://doi.org/10.1136/sti.2010.044446" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1136/sti.2010.044446</a></ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1136/sti.2010.044446" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1136/sti.2010.044446</a></dgdoi:pub-id><dgpm:pub-id xmlns:dgpm="http://degruyter.com/resources/fetched-pubmed-id" pub-id-type="pmcid">3010902</dgpm:pub-id><dgpm:pub-id xmlns:dgpm="http://degruyter.com/resources/fetched-pubmed-id" pub-id-type="pmid">21106509</dgpm:pub-id>
  3. Booth, J.G., R.W. Butler, and P. Hall. 1994. “Bootstrap methods for finite populations.” <em>Journal of the American Statistical Association</em> 89: 1282 – 1289. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/01621459.1994.10476868" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/01621459.1994.10476868</a>">https://doi.org/10.1080/01621459.1994.10476868</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/01621459.1994.10476868" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/01621459.1994.10476868</a></dgdoi:pub-id>
  4. Burnham, K.P., and W.S. Overton. 1978. “Estimation of the size of a closed population when capture probabilities vary among animals.” <em>Biometrika</em> 65: 625–633. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1093/biomet/65.3.625" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/biomet/65.3.625</a>">https://doi.org/10.1093/biomet/65.3.625</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1093/biomet/65.3.625" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/biomet/65.3.625</a></dgdoi:pub-id>
  5. Chao, A. 1987. “Estimating the population size for capture-recapture data with unequal catchability.” <em>Biometrics</em> 43: 783–791. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2307/2531532" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2307/2531532</a>">https://doi.org/10.2307/2531532</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2307/2531532" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2307/2531532</a></dgdoi:pub-id>
  6. Cheng, S., D.J. Eck, and F.W. Crawford. 2020. “Estimating the size of a hidden finite set: Large-sample behavior of estimators.” <em>Statistics Surveys</em> 14: 1–31. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1214/19-SS127" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1214/19-SS127</a>">https://doi.org/10.1214/19-SS127</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1214/19-SS127" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1214/19-SS127</a></dgdoi:pub-id>
  7. Chow, M., and S.K. Thompson. 2003. “Estimation with link-tracing sampling designs – A Bayesian approach.” <em>Survey Methodology</em> 29: 197–205. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2006002/article/9553-eng.pdf?st=6cXXjDD2">https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2006002/article/9553-eng.pdf?st=6cXXjDD2</ext-link> (accessed April 2020).
  8. Coull, B.A., and A. Agresti. 1999. “The use of mixed logit models to reflect heterogeneity in capture-recapture studies.” <em>Biometrics</em> 55: 294–301. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.0006-341X.1999.00294.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.0006-341X.1999.00294.x</a>">https://doi.org/10.1111/j.0006-341X.1999.00294.x</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/j.0006-341X.1999.00294.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.0006-341X.1999.00294.x</a></dgdoi:pub-id>
  9. Crawford, F.W., J. Wu, and R. Heimer. 2018. “Hidden population size estimation from respondent-driven sampling: A network approach.” <em>Journal of the American Statistical Association</em> 113: 755–766. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/01621459.2017.1285775" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/01621459.2017.1285775</a>">https://doi.org/10.1080/01621459.2017.1285775</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/01621459.2017.1285775" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/01621459.2017.1285775</a></dgdoi:pub-id><dgpm:pub-id xmlns:dgpm="http://degruyter.com/resources/fetched-pubmed-id" pub-id-type="pmcid">6392194</dgpm:pub-id><dgpm:pub-id xmlns:dgpm="http://degruyter.com/resources/fetched-pubmed-id" pub-id-type="pmid">30828120</dgpm:pub-id>
  10. Dávid, B., and T.A.B. Snijders. 2002. “Estimating the Size of the Homeless Population in Budapest, Hungary.” <em>Quality &amp; Quantity</em> 36: 291–303. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1023/A:1016080606287" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1023/A:1016080606287</a>">https://doi.org/10.1023/A:1016080606287</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1023/A:1016080606287" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1023/A:1016080606287</a></dgdoi:pub-id>
  11. Davison, A.C., and D.V. Hinkley. 1997. <em>Bootstrap Methods and their Applications</em>. New York: Cambridge University Press.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1017/CBO9780511802843" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/CBO9780511802843</a></dgdoi:pub-id>
  12. Dombrowski, K., B. Khan, T. Wendel, K. McLean, E. Misshula, and R. Curtis. 2012. “Estimating the Size of the Methamphetamine-Using Population in New York City Using Network Sampling Techniques.” <em>Advances in Applied Sociology</em> 2: 245–252. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.4236/aasoci.2012.24032" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4236/aasoci.2012.24032</a>">https://doi.org/10.4236/aasoci.2012.24032</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.4236/aasoci.2012.24032" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4236/aasoci.2012.24032</a></dgdoi:pub-id><dgpm:pub-id xmlns:dgpm="http://degruyter.com/resources/fetched-pubmed-id" pub-id-type="pmcid">3963163</dgpm:pub-id><dgpm:pub-id xmlns:dgpm="http://degruyter.com/resources/fetched-pubmed-id" pub-id-type="pmid">24672746</dgpm:pub-id>
  13. Félix-Medina, M.H., and P.E. Monjardin. 2006. “Combining link-tracing sampling and cluster sampling to estimate the size of hidden populations: A Bayesian assisted approach.” <em>Survey Methodology</em> 32: 187–195. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2006002/article/9553-eng.pdf?st=6cXXjDD2">https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2006002/article/9553-eng.pdf?st=6cXXjDD2</ext-link> (accessed April 2020).
  14. Félix-Medina, M.H., and P.E. Monjardin. 2010. “Combining Link-Tracing Sampling and Cluster Sampling to Estimate Totals and Means of Hidden Human Populations.” <em>Journal of Official Statistics</em> 26(4): 603–631. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/20200206/felix-medina.pdf">https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/20200206/felix-medina.pdf</ext-link> (accessed April 2020).
  15. Félix-Medina, M.H., P.E. Monjardin, and A.N. Aceves-Castro. 2015. “Combining link-tracing sampling and cluster sampling to estimate the size of a hidden population in presence of heterogeneous link-probabilities.” <em>Survey Methodology</em>: 349–376. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2015002/article/14238-eng.pdf?st=ki7rx2GZ">https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2015002/article/14238-eng.pdf?st=ki7rx2GZ</ext-link> (accessed April 2020).
  16. Félix-Medina, M.H., and S.K. Thompson. 2004. “Combining Cluster Sampling and Link-Tracing Sampling to Estimate the Size of Hidden Populations.” <em>Journal of Official Statistics</em> 20(1): 19–38. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.scb.se/contentassets/ca21efb41-fee47d293bbee5bf7be7fb3/combining-link-tracing-sampling-and-cluster-sampling-to-estimate-the-size-of-hidden-populations.pdf">https://www.scb.se/contentassets/ca21efb41-fee47d293bbee5bf7be7fb3/combining-link-tracing-sampling-and-cluster-sampling-to-estimate-the-size-of-hidden-populations.pdf</ext-link> (accessed April 2020).
  17. Fienberg, S.E., M.S. Johnson, and B.W. Junker. 1999. “Classical multilevel and Bayesian approaches to population size estimation using multiple lists.” <em>Journal of the Royal Statistical Society. Series A</em> 162: 383–405. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/1467-985X.00143" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/1467-985X.00143</a>">https://doi.org/10.1111/1467-985X.00143</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/1467-985X.00143" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/1467-985X.00143</a></dgdoi:pub-id>
  18. Frank, O., and T. Snijders. 1994. “Estimating the Size of Hidden Populations Using Snowball Sampling.” <em>Journal of Official Statistics</em> 10 (1): 53–67. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/estimating-the-size-of-hidden-populations-using-snowball-sampling.pdf">https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/estimating-the-size-of-hidden-populations-using-snowball-sampling.pdf</ext-link> (accessed April 2020).
  19. Freeman L.C. (n.d.) Network data sets repository. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://moreno.ss.uci.edu/data">http://moreno.ss.uci.edu/data</ext-link> (accessed June 2018).
  20. Giner, G., and G.K. Smyth. 2016. “statmod: Probability calculations for the inverse Gaussian distribution.” <em>The R Journal</em> 8: 339–351. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.32614/RJ-2016-024" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.32614/RJ-2016-024</a>">https://doi.org/10.32614/RJ-2016-024</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.32614/RJ-2016-024" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.32614/RJ-2016-024</a></dgdoi:pub-id>
  21. Handcock, M.S., K.J. Gile, and C.M. Mar. 2014. “Estimating hidden population size using respondent-driven sampling data.” <em>Electronic Journal of Statistics</em> 8: 1491–1521. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1214/14-EJS923" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1214/14-EJS923</a>">https://doi.org/10.1214/14-EJS923</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1214/14-EJS923" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1214/14-EJS923</a></dgdoi:pub-id>
  22. Harris, K.M. 2013. “The add health study: Design and accomplishments.” Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.cpc.unc.edu/projects/addhealth/data/guides/DesignPaperWIIV.pdf">www.cpc.unc.edu/projects/addhealth/data/guides/DesignPaperWIIV.pdf</ext-link> (accessed September 2017).
  23. Heckathorn, D.D. 1997. “Respondent driven sampling: a new approach to the study of hidden samples.” <em>Social Problems</em> 44: 174–199. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2307/3096941" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2307/3096941</a>">https://doi.org/10.2307/3096941</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2307/3096941" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2307/3096941</a></dgdoi:pub-id>
  24. Heckathorn, D.D. 2002. “Respondent-driven sampling II: deriving valid population estimates from chain-referral samples of hidden populations.” <em>Social Problems</em> 49: 11–34. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1525/sp.2002.49.1.11" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1525/sp.2002.49.1.11</a>">https://doi.org/10.1525/sp.2002.49.1.11</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1525/sp.2002.49.1.11" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1525/sp.2002.49.1.11</a></dgdoi:pub-id>
  25. Heckathorn, D.D., and C.J. Cameron. 2017. “Network sampling: From snowball and multiplicity to respondent-driven sampling.” <em>Annual Review of Sociology</em> 43: 101–119. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1146/annurev-soc-060116-053556" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1146/annurev-soc-060116-053556</a>">https://doi.org/10.1146/annurev-soc-060116-053556</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1146/annurev-soc-060116-053556" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1146/annurev-soc-060116-053556</a></dgdoi:pub-id>
  26. Hwang, W-H., and R. Huggins. 2005. “An examination of the effect of heterogeneity on the estimation of population size using capture-recapture data.” <em>Biometrika</em> 92: 229–233. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1093/biomet/92.1.229" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/biomet/92.1.229</a>">https://doi.org/10.1093/biomet/92.1.229</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1093/biomet/92.1.229" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/biomet/92.1.229</a></dgdoi:pub-id>
  27. Johnston, L.G., D. Prybylski, H.F. Raymond, A. Mirzazadeh, C. Manopaiboon, and W. McFarland. 2013. “Incorporating the service multiplier method in respondent-driven sampling surveys to estimate the size of hidden and hard-to-reach populations: Case studies from around the world.” <em>Sexually Transmitted Diseases</em> 40: 304–310. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1097/OLQ.0b013e31827fd650" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1097/OLQ.0b013e31827fd650</a>">https://doi.org/10.1097/OLQ.0b013e31827fd650</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1097/OLQ.0b013e31827fd650" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1097/OLQ.0b013e31827fd650</a></dgdoi:pub-id>
  28. Kalton, G. 2009. “Methods for oversampling rare populations in social surveys.” <em>Survey Methodology</em> 35: 125–141. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2009002/article/11036-eng.pdf?st=PyvQkTH4">https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2009002/article/11036-eng.pdf?st=PyvQkTH4</ext-link> (accessed April 2020).
  29. Khan, B., H.-W. Lee, I. Fellows, and K. Dombrowski. 2018. “One-step estimation of networked population size: Respondent-driven capture-recapture with anonymity.” <em>PLoS ONE</em> 13 (4): 1–39. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1371/journal.pone.0195959" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pone.0195959</a>">https://doi.org/10.1371/journal.pone.0195959</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1371/journal.pone.0195959" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1371/journal.pone.0195959</a></dgdoi:pub-id>
  30. Killworth, P., E. Johnsen, C. McCarty, G. Shelley, and H. Bernard. 1998a. “A social network approach to estimating seroprevalence in the United States.” <em>Social Networks</em> 20: 23–50. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0378-8733(96)00305-X" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0378-8733(96)00305-X</a>">https://doi.org/10.1016/S0378-8733(96)00305-X</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0378-8733(96)00305-X" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0378-8733(96)00305-X</a></dgdoi:pub-id>
  31. Killworth, P., C. McCarty, H. Bernard, G. Shelley, and E. Johnsen. 1998b. “Estimation of seroprevalence, rape and homelessness in the United States using a social network approach.” <em>Evaluation Review</em> 22: 289–308. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1177/0193841X9802200205" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1177/0193841X9802200205</a>">https://doi.org/10.1177/0193841X9802200205</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1177/0193841X9802200205" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1177/0193841X9802200205</a></dgdoi:pub-id><dgpm:pub-id xmlns:dgpm="http://degruyter.com/resources/fetched-pubmed-id" pub-id-type="pmid">10183307</dgpm:pub-id>
  32. Klovdahl, A.S. 1989. “Urban Social Networks: Some Methodological Problems and Possibilities.” In <em>The Small World</em>, edited by M. Kochen, 176–210. Norwood, NJ: Ablex.
  33. Korn, E.L., and B.I. Graubard. 1998. “Confidence intervals for proportions with small expected number of positive counts estimated from survey data.” <em>Survey Methodology</em> 24: 193–201.
  34. Lee, S., J. Wagner, R. Valliant, and S. Heeringa. 2014. “Recent developments of sampling hard-to-survey populations: An assessment.” In <em>Hard-to-Survey Populations</em>, edited by R. Tourangeau, B. Edwards, T. Johnson, K. Wolter, and N. Bates (Eds.), 424–444. Cambridge: Cambridge University Press. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1017/CBO9781139381635.025" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1017/CBO9781139381635.025</a>">https://doi.org/10.1017/CBO9781139381635.025</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1017/CBO9781139381635.025" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/CBO9781139381635.025</a></dgdoi:pub-id>
  35. MacKellar, D., L. Valleroy, J. Karon, G. Lemp, and R. Janssen. 1996. “The Young Men’s Survey: Methods for estimating HIV seroprevalence and risk factors among young men who have sex with men.” <em>Public Health Reports</em> 111(Suppl. 1): 138–44. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1382056/pdf/pubhealthrep00044-0140.pdf">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1382056/pdf/pubhealthrep00044-0140.pdf</ext-link> (accessed April 2020).
  36. Magnani, R., K. Sabin, T. Saidel, and D. Heckathorn. 2005. “Review of sampling hard-to-reach populations for HIV surveillance.” <em>AIDS</em> 19: S67–S72. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1097/01.aids.0000172879.20628.e1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1097/01.aids.0000172879.20628.e1</a>">https://doi.org/10.1097/01.aids.0000172879.20628.e1</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1097/01.aids.0000172879.20628.e1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1097/01.aids.0000172879.20628.e1</a></dgdoi:pub-id><dgpm:pub-id xmlns:dgpm="http://degruyter.com/resources/fetched-pubmed-id" pub-id-type="pmid">15930843</dgpm:pub-id>
  37. Maltiel, R., A.E. Raftery, T.H. McCormick, and A.J. Baraff. 2015. “Estimating population size using the network scale up method.” <em>The Annals of Applied Statistics</em> 9: 1247–1277. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1214/15-AOAS827" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1214/15-AOAS827</a>">https://doi.org/10.1214/15-AOAS827</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1214/15-AOAS827" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1214/15-AOAS827</a></dgdoi:pub-id><dgpm:pub-id xmlns:dgpm="http://degruyter.com/resources/fetched-pubmed-id" pub-id-type="pmcid">4777323</dgpm:pub-id><dgpm:pub-id xmlns:dgpm="http://degruyter.com/resources/fetched-pubmed-id" pub-id-type="pmid">26949438</dgpm:pub-id>
  38. Marpsat, M., and N. Razafindratsima. 2010. “Survey methods for hard-to-reach populations: Introduction to the special issue.” <em>Methodological Innovations Online</em> 5: 3–16. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.4256/mio.2010.0014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4256/mio.2010.0014</a>">https://doi.org/10.4256/mio.2010.0014</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.4256/mio.2010.0014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4256/mio.2010.0014</a></dgdoi:pub-id>
  39. McCormick, T.H., M.J. Salganik, and T. Zheng. 2010. “How many people do you know? Efficiently estimating personal network size.” <em>Journal of the American Statistical Association</em> 105: 59–70. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1198/jasa.2009.ap08518" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1198/jasa.2009.ap08518</a>">https://doi.org/10.1198/jasa.2009.ap08518</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1198/jasa.2009.ap08518" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1198/jasa.2009.ap08518</a></dgdoi:pub-id><dgpm:pub-id xmlns:dgpm="http://degruyter.com/resources/fetched-pubmed-id" pub-id-type="pmcid">3666355</dgpm:pub-id><dgpm:pub-id xmlns:dgpm="http://degruyter.com/resources/fetched-pubmed-id" pub-id-type="pmid">23729943</dgpm:pub-id>
  40. Meng, V.Y., and P. Gustafson. 2017. “Inferring population size: extending the multiplier method to incorporate multiple traits with a likelihood-based approach.” <em>Stat</em> 6: 4–13. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/sta4.131" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/sta4.131</a>">https://doi.org/10.1002/sta4.131</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1002/sta4.131" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/sta4.131</a></dgdoi:pub-id>
  41. Pledger, S. 2000. “Unified maximum likelihood estimates for closed capture-recapture models using mixtures.” <em>Biometrics</em> 56: 434–442. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.0006-341X.2000.00434.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.0006-341X.2000.00434.x</a>">https://doi.org/10.1111/j.0006-341X.2000.00434.x</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/j.0006-341X.2000.00434.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.0006-341X.2000.00434.x</a></dgdoi:pub-id>
  42. R Core Team. 2018. <em>R: A Language and Environment for Statistical Computing</em>. Vienna, Austria: R Foundation for Statistical Computing. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.R-project.org/">https://www.R-project.org/</ext-link> (accessed April 2020).
  43. Reiser, M. 2019. “Goodness of fit testing in sparse contingency tables when the number of variables is large.” <em>Wiley Interdisciplinary Reviews: Computational Statistics</em> 11(6): e1470. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/wics.1470" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/wics.1470</a>">https://doi.org/10.1002/wics.1470</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1002/wics.1470" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/wics.1470</a></dgdoi:pub-id>
  44. Sanathanan, L. 1972. “Estimating the size of a multinomial population.” <em>Annals of Mathematical Statistics</em> 43: 142–152. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1214/aoms/1177692709" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1214/aoms/1177692709</a>">https://doi.org/10.1214/aoms/1177692709</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1214/aoms/1177692709" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1214/aoms/1177692709</a></dgdoi:pub-id>
  45. Särndal, C.-E., B. Swensson, and J. Wretman. 1992. <em>Model Assisted Survey Sampling</em>. New York: Springer-Verlag.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-1-4612-4378-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-1-4612-4378-6</a></dgdoi:pub-id>
  46. Spreen, M. 1992. “Rare populations, hidden populations and link-tracing designs: What and why?” <em>Bulletin de Méthodologie Sociologique</em> 36: 34–58. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1177/075910639203600103" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1177/075910639203600103</a>">https://doi.org/10.1177/075910639203600103</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1177/075910639203600103" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1177/075910639203600103</a></dgdoi:pub-id>
  47. Spreen, M., and S. Bogaerts. 2015. “B-Graph Sampling to Estimate the Size of a Hidden Population.” <em>Journal of Official Statistics</em> 31: 723–736. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1515/-jos-2015-0042" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1515/-jos-2015-0042</a>">https://doi.org/10.1515/-jos-2015-0042</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1515/jos-2015-0042" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/jos-2015-0042</a></dgdoi:pub-id>
  48. Staudte, R.G., and S.J. Sheather. 1990. <em>Robust Estimation and Testing</em>. New York: Wiley.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1002/9781118165485" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/9781118165485</a></dgdoi:pub-id>
  49. St. Clair, K., and D. O’Connell. 2012. “A Bayesian model for estimating population means using a link-tracing sampling design.” <em>Biometrics</em> 68: 165–173. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1541-0420.2011.01631.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1541-0420.2011.01631.x</a>">https://doi.org/10.1111/j.1541-0420.2011.01631.x</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/j.1541-0420.2011.01631.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1541-0420.2011.01631.x</a></dgdoi:pub-id><dgpm:pub-id xmlns:dgpm="http://degruyter.com/resources/fetched-pubmed-id" pub-id-type="pmid">21668905</dgpm:pub-id>
  50. Thompson, S.K. 2012. <em>Sampling, Third edition</em>. New Jersey: Wiley.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1002/9781118162934" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/9781118162934</a></dgdoi:pub-id>
  51. Thompson, S.K., and O. Frank. 2000. “Model-based estimation with link-tracing sampling designs.” <em>Survey Methodology</em> 26: 87–98. Available at <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www150.statcan.gc.ca/-n1/en/pub/12-001-x/2000001/article/5181-eng.pdf?st=dgk9U6pj">https://www150.statcan.gc.ca/-n1/en/pub/12-001-x/2000001/article/5181-eng.pdf?st=dgk9U6pj</ext-link> (accessed April 2020).
  52. Tourangeau, R. 2014. “Defining hard-to-survey populations.” In <em>Hard-to-Survey Populations</em>, edited by R. Tourangeau, B. Edwards, T. Johnson, K. Wolter, and N. Bates (Eds.), 3–20. Cambridge: Cambridge University Press. DOI: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1017/CBO9781139381635.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1017/CBO9781139381635.003</a>">https://doi.org/10.1017/CBO9781139381635.003</ext-link>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1017/CBO9781139381635.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/CBO9781139381635.003</a></dgdoi:pub-id>
  53. UNAIDS/WHO (World Health Organization Working Group on Global HIV/AIDS, and STI Surveillance). 2010. <em>Guidelines on estimating the size of populations most at risk to HIV</em>. UNAIDS– Joint United Nations Programme on HIV/AIDS. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://data.unaids.org/pub/manual/2010/guidelines_popnestimationsize_en.pdf">https://data.unaids.org/pub/manual/2010/guidelines_popnestimationsize_en.pdf</ext-link>. (accessed June 2015).
  54. Volz, E., and D. Heckathorn. 2008. “Probability based estimation theory for respondent driven sampling.” <em>Journal of Official Statistics</em> 24: 79–97. Available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.sverigeisiffror.scb.se/contentassets/ff271eeeca694f47ae99b942de61df83/probability-based-estimation-theory-for-respondent-driven-sampling.pdf">http://www.sverigeisiffror.scb.se/contentassets/ff271eeeca694f47ae99b942de61df83/probability-based-estimation-theory-for-respondent-driven-sampling.pdf</ext-link> (accessed April 2020).
  55. Williams, B.K., J.D. Nichols, and M.J. Conroy. 2002. <em>Analysis and Management of Animal Populations</em>. San Diego, California: Academic Press.
Language: English
Page range: 865 - 905
Submitted on: Jun 1, 2020
Accepted on: Jun 1, 2021
Published on: Dec 26, 2021
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Martín Humberto Félix-Medina, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.