Have a personal or library account? Click to login

Proxy Pattern-Mixture Analysis for a Binary Variable Subject to Nonresponse

Open Access
|Jul 2020

References

  1. Agresti, A. 2002. Categorical Data Analysis. New York: Wiley.10.1002/0471249688
  2. Albert, J.H. and S. Chib. 1993. “Bayesian Analysis of Binary and Polychotomous Response Data.” Journal of the American Statistical Association 88: 669–679. DOI: https://doi.org/10.1080/01621459.1993.10476321.10.1080/01621459.1993.10476321
  3. Andridge, R., A.M. Noone, and N. Howlader. 2017. “Imputing estrogen receptor (ER) status in a populationbased cancer registry: a sensitivity analysis.” Statistics in Medicine 36: 1014–1028. DOI: https://doi.org/10.1002/sim.7193.10.1002/sim.719327921315
  4. Andridge, R.R. and R.J.A. Little. 2011. “Proxy Pattern-Mixture Analysis for Survey Nonresponse.” Journal of Official Statistics 27: 153–180. DOI: https://doi.org/10.1214/15-AOAS878SUPP.10.1214/15-AOAS878SUPP
  5. Andridge, R.R. and K.J. Thompson. 2015. “Assessing nonresponse bias in a business survey: proxy pattern-mixture analysis for skewed data.” The Annals of Applied Statistics 9: 2237–2265. DOI: https://doi.org/10.1214/15-AOAS878.10.1214/15-AOAS878
  6. Barnhart, W.R., D. Ellsworth, A.C. Robinson, J. Myers, R.R. Andridge, and S.M. Havercamp. 2019. “Caregiving in the shadows: National analysis of health outcomes and intensity and duration of care among those who care for people with mental illness and for people with developmental disabilities.” Disability and Health Journal 3: 100837. DOI: https://doi.org/10.1016/j.dhjo.2019.100837.10.1016/j.dhjo.2019.10083731506219
  7. Brick, J.M. and D. Williams. 2013. “Explaining Rising Nonresponse Rates in Cross-Sectional Surveys.” The ANNALS of the American Academy of Political and Social Science 645: 36–59. DOI: https://doi.org/10.1177/0002716212456834.10.1177/0002716212456834
  8. Cox, N.R. 1974. “Estimation of the Correlation Between a Continuous and a Discrete Variable.” Biometrics 30: 171–178. DOI: https://doi.org/10.2307/2529626.10.2307/2529626
  9. Curtain, R., S. Presser, and E. Singer. 2005. “Changes in Telephone Survey Nonresponse over the Past Quarter Century.” Public Opinion Quarterly 69: 87–98. DOI: https://doi.org/10.1093/poq/nfi002.10.1093/poq/nfi002
  10. Heckman, J.J. 1976. “The Common Structure of Statistical Models of Truncation, Sample Selection, and Limited Dependent Variables and a Simple Estimator for Such Models.” The Annals of Economic and Social Measurement 5: 475–492.
  11. Hedeker, D., R.J. Mermelstein, and H. Demirtas. 2007. “Analysis of binary outcomes with missing data: missing = smoking, last observation carried forward, and a little multiple imputation.” Addiction 102: 1564–1573. DOI: https://doi.org/10.1111/j.1360-0443.2007.01946.x.10.1111/j.1360-0443.2007.01946.x17854333
  12. Higgins, J.P.T., I.R. White, and A.M. Wood. 2008. “Imputation methods for missing outcome data in meta-analysis of clinical trials.” Clinical Trials 5: 225–239. DOI: https://doi.org/10.1177/1740774508091600.10.1177/1740774508091600260260818559412
  13. Jackson, D., I.R. White, D. Mason, and S. Sutton. 2014. “A general method for handling missing binary outcome data in randomized controlled trials.” Addiction 109: 1286–1993. DOI: https://doi.org/10.1111/add.12721.10.1111/add.12721424104825171441
  14. Kim, J.K., J.M. Brick, W.A. Fuller, and G. Kalton. 2006. “On the Bias of the Multiple-Imputation Variance Estimator in Survey Sampling.” Journal of the Royal Statistical Society B 68: 509–521. DOI: https://doi.org/10.1111/j.1467-9868.2006.00546.x.10.1111/j.1467-9868.2006.00546.x
  15. Little, R.J.A. 1993. “Pattern-Mixture Models for Multivariate Incomplete Data.” Journal of the American Statistical Association 88: 125–134. DOI: https://doi.org/10.2307/2533148.10.2307/2533148
  16. Little, R.J.A. 1994. “A Class of Pattern-Mixture Models for Normal Incomplete Data.” Biometrika 81: 471–483. DOI: https://doi.org/10.1093/biomet/81.3.471.10.1093/biomet/81.3.471
  17. Little, R.J.A. and D.B. Rubin. 2019. “Statistical Analysis with Missing Data.” 3rd edition. Wiley: New York.10.1002/9781119482260
  18. Little, R.J.A. and Y. Wang. 1996. “Pattern-Mixture Models for Multivariate Incomplete Data with Covariates.” Biometrics 52: 98–111. DOI: https://doi.org/10.1080/01621459.1993.10594302.10.1080/01621459.1993.10594302
  19. Little, R.J.A., B.T. West, P.S. Boonstra, and J. Hu. 2019. “Measures of the Degree of Departure from Ignorable Sample Selection.” Journal of Survey Statistics and Methodology. DOI: https://doi.org/10.1093/jssam/smz023.10.1093/jssam/smz023775089033381610
  20. Liublinska, V. and D.B. Rubin. 2014. “Sensitivity analysis for a partially missing binary outcome in two-arm randomized clinical trial.” Statistics in Medicine 33: 4170–4185. DOI: https://doi.org/10.1002/sim.6197.10.1002/sim.6197429721524845086
  21. Lumley, T. 2004. “Analysis of Complex Survey Samples.” Journal of Statistical Software 9: 1–19.10.18637/jss.v009.i08
  22. Magder, L.S. 2003. “Simple approaches to assess the possible impact of missing outcome information on estimates of risk ratios, odds ratios, and risk differences.” Controlled Clinical Trials 24: 411–421. DOI: https://doi.org/10.1016/s0197-2456(03)00021-7.10.1016/S0197-2456(03)00021-7
  23. Manski, C.F. 2016. “Credible Interval Estimates for Official Statsitics with Survey Nonresponse.” Journal of Econometrics 191: 293–301. DOI: https://doi.org/10.1016/j.jeconom.2015.12.002.10.1016/j.jeconom.2015.12.002
  24. Muthen, B., T. Asparouhov, A.M. Hunter, and A.F. Leuchter. 2011. “Growth Modeling With Nonignorable Dropout: Alternative Analyses of the STAR*D Antidepressant Trial.” Psychological Methods 16: 17–33. DOI: https://doi.org/10.1037/a0022634.10.1037/a0022634306093721381817
  25. Nandram, B. and J.W. Choi. 2002a. “A Bayesian Analysis of a Proportion Under Non-Ignorable Non-Response.” Statistics in Medicine 21: 1189–1212. DOI: https://doi.org/10.1002/sim.1100.10.1002/sim.110012111874
  26. Nandram, B. and J.W. Choi. 2002b. “Hierarchical Bayesian Nonresponse Models for Binary Data from Small Areas with Uncertainty about Ignorability.” Journal of the American Statistical Association 97: 381 – 388. DOI: https://doi.org/10.1198/016214502760046934.10.1198/016214502760046934
  27. Nandram, B., G. Han, and J.W. Choi. 2002. “A Hierarchical Bayesian Nonignorable Nonresponse Model for Multinomial Data from Small Areas.” Survey Methodology 28: 145–156.
  28. Nandram, B., N. Liu, J.W. Choi, and L. Cox. 2005. “Bayesian Non-response Models for Categorical Data from Small Areas: An Application to BMD and Age.” Statistics in Medicine 24: 1047–1074. DOI: https://doi.org/10.1002/sim.1985.10.1002/sim.198515565730
  29. Olsson, U., F. Drasgow, and N.J. Dorans. 1982. “The Polyserial Correlation Coefficient.” Psychometrika 47: 337–347. DOI: https://doi.org/10.1007/BF02294164.10.1007/BF02294164
  30. R Core Team. 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org (accessed June 2020).
  31. RTI International. 2015. 2015 Ohio Medicaid Assessment Survey Methodology Report. Technical report, RTI International. Available at: http://grc.osu.edu/sites/default/files/inline-files/12015OMASMethReptFinal121115psg.pdf (accessed June 2020).
  32. Rubin, D.B. 1976. “Inference and Missing Data” (with Discussion). Biometrika 63: 581–592. DOI: https://doi.org/10.1093/biomet/63.3.581.10.1093/biomet/63.3.581
  33. Rubin, D.B. 1977. “Formalizing Subjective Notions About the Effect of Nonrespondents in Sample Surveys.” Journal of the American Statistical Association 72: 538–542. DOI: https://doi.org/10.1080/01621459.1991.10475033.10.1080/01621459.1991.10475033
  34. Rubin, D.B. 1978. “Multiple Imputation in Sample Surveys.” A Phenomenological Bayesian Approach to Nonresponse. In Proceedings of the Survey Research Methods Section, American Statistical Association (San Diego, CA): 20–34. DOI: https://doi.org/10.1002/9780470316696.10.1002/9780470316696
  35. Stasny, E.A. 1991. “Hierarchical Models for the Probabilities of a Survey Classification and Nonresponse: An Example from the National Crime Survey.” Journal of the American Statistical Association 86: 296–303. DOI: https://doi.org/10.1080/01621459.1991.10475033.10.1080/01621459.1991.10475033
  36. Sullivan, D. and R. Andridge. 2015. “A hot deck imputation procedure for multiply imputing nonignorable missing data: The proxy pattern-mixture hot deck.” Computational Statistics and Data Analysis 82: 173–185. DOI: https://doi.org/10.1016/j.csda.2014.09.008.10.1016/j.csda.2014.09.008
  37. Tate, R.F. 1955a. “Applications of Correlation Models for Biserial Data.” Journal of the American Statistical Association 50: 1078–1095. DOI: https://doi.org/10.1080/01621459.1955.10501293.10.1080/01621459.1955.10501293
  38. Tate, R.F. 1955b. “The Theory of Correlation Between Two Continuous Variables When One is Dichotomized.” Biometrika 42: 205–216. DOI: https://doi.org/10.2307/2333437.10.2307/2333437
Language: English
Page range: 703 - 728
Submitted on: Aug 1, 2018
Accepted on: Oct 1, 2019
Published on: Jul 24, 2020
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 Rebecca R. Andridge, Roderick J.A. Little, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.