Andridge, R., A.M. Noone, and N. Howlader. 2017. “Imputing estrogen receptor (ER) status in a populationbased cancer registry: a sensitivity analysis.” Statistics in Medicine 36: 1014–1028. DOI: https://doi.org/10.1002/sim.7193.10.1002/sim.719327921315
Andridge, R.R. and K.J. Thompson. 2015. “Assessing nonresponse bias in a business survey: proxy pattern-mixture analysis for skewed data.” The Annals of Applied Statistics 9: 2237–2265. DOI: https://doi.org/10.1214/15-AOAS878.10.1214/15-AOAS878
Barnhart, W.R., D. Ellsworth, A.C. Robinson, J. Myers, R.R. Andridge, and S.M. Havercamp. 2019. “Caregiving in the shadows: National analysis of health outcomes and intensity and duration of care among those who care for people with mental illness and for people with developmental disabilities.” Disability and Health Journal 3: 100837. DOI: https://doi.org/10.1016/j.dhjo.2019.100837.10.1016/j.dhjo.2019.10083731506219
Curtain, R., S. Presser, and E. Singer. 2005. “Changes in Telephone Survey Nonresponse over the Past Quarter Century.” Public Opinion Quarterly 69: 87–98. DOI: https://doi.org/10.1093/poq/nfi002.10.1093/poq/nfi002
Heckman, J.J. 1976. “The Common Structure of Statistical Models of Truncation, Sample Selection, and Limited Dependent Variables and a Simple Estimator for Such Models.” The Annals of Economic and Social Measurement 5: 475–492.
Jackson, D., I.R. White, D. Mason, and S. Sutton. 2014. “A general method for handling missing binary outcome data in randomized controlled trials.” Addiction 109: 1286–1993. DOI: https://doi.org/10.1111/add.12721.10.1111/add.12721424104825171441
Little, R.J.A. 1993. “Pattern-Mixture Models for Multivariate Incomplete Data.” Journal of the American Statistical Association 88: 125–134. DOI: https://doi.org/10.2307/2533148.10.2307/2533148
Little, R.J.A., B.T. West, P.S. Boonstra, and J. Hu. 2019. “Measures of the Degree of Departure from Ignorable Sample Selection.” Journal of Survey Statistics and Methodology. DOI: https://doi.org/10.1093/jssam/smz023.10.1093/jssam/smz023775089033381610
Liublinska, V. and D.B. Rubin. 2014. “Sensitivity analysis for a partially missing binary outcome in two-arm randomized clinical trial.” Statistics in Medicine 33: 4170–4185. DOI: https://doi.org/10.1002/sim.6197.10.1002/sim.6197429721524845086
Muthen, B., T. Asparouhov, A.M. Hunter, and A.F. Leuchter. 2011. “Growth Modeling With Nonignorable Dropout: Alternative Analyses of the STAR*D Antidepressant Trial.” Psychological Methods 16: 17–33. DOI: https://doi.org/10.1037/a0022634.10.1037/a0022634306093721381817
Nandram, B. and J.W. Choi. 2002a. “A Bayesian Analysis of a Proportion Under Non-Ignorable Non-Response.” Statistics in Medicine 21: 1189–1212. DOI: https://doi.org/10.1002/sim.1100.10.1002/sim.110012111874
Nandram, B. and J.W. Choi. 2002b. “Hierarchical Bayesian Nonresponse Models for Binary Data from Small Areas with Uncertainty about Ignorability.” Journal of the American Statistical Association 97: 381 – 388. DOI: https://doi.org/10.1198/016214502760046934.10.1198/016214502760046934
Nandram, B., G. Han, and J.W. Choi. 2002. “A Hierarchical Bayesian Nonignorable Nonresponse Model for Multinomial Data from Small Areas.” Survey Methodology 28: 145–156.
Nandram, B., N. Liu, J.W. Choi, and L. Cox. 2005. “Bayesian Non-response Models for Categorical Data from Small Areas: An Application to BMD and Age.” Statistics in Medicine 24: 1047–1074. DOI: https://doi.org/10.1002/sim.1985.10.1002/sim.198515565730
R Core Team. 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org (accessed June 2020).
Rubin, D.B. 1978. “Multiple Imputation in Sample Surveys.” A Phenomenological Bayesian Approach to Nonresponse. In Proceedings of the Survey Research Methods Section, American Statistical Association (San Diego, CA): 20–34. DOI: https://doi.org/10.1002/9780470316696.10.1002/9780470316696
Sullivan, D. and R. Andridge. 2015. “A hot deck imputation procedure for multiply imputing nonignorable missing data: The proxy pattern-mixture hot deck.” Computational Statistics and Data Analysis 82: 173–185. DOI: https://doi.org/10.1016/j.csda.2014.09.008.10.1016/j.csda.2014.09.008