Have a personal or library account? Click to login

The Utility of Nonparametric Transformations for Imputation of Survey Data

Open Access
|Dec 2014

References

  1. Azzalini, A. 1985. “A Class of Distributions Which Includes the Normal Ones.” Scandinavian Journal of Statistics 12: 171-178.
  2. Dempster, A.P., N.M. Laird, and D.B. Rubin. 1977. “Maximum Likelihood From Incomplete Data via the EM Algorithm (with discussion).” Journal of the Royal Statistical Society Series B 39: 1-38.
  3. Fay, R.E. 1996. “Alternative Paradigms for the Analysis of Imputed Survey Data.” Journal of the American Statistical Association 91: 490-498. DOI: http://dx.doi.org/10.1080/01621459.1996.10476909.10.1080/01621459.1996.10476909
  4. Huffman, W.E. 1980. “Farm and Off-Farm Work Decisions: The Role of Human Capital.” Review of Economics and Statistics 62: 14-23.10.2307/1924268
  5. Huffman, W.E., and M.D. Lange. 1989. “Off-Farm Work Decisions of Husbands and Wives: Joint Decision Making.” The Review of Economics and Statistics 71: 471-480. DOI: http://dx.doi.org/10.2307/1926904.10.2307/1926904
  6. Javaras, K.N., and D.A. van Dyk. 2003. “Multiple Imputation for Incomplete Data with Semicontinuous Variables.” Journal of the American Statistical Association 98: 703-715. DOI: http://dx.doi.org/10.1198/016214503000000611.10.1198/016214503000000611
  7. Kim, J.K., J.M. Brick, W.A. Fuller, and G. Kalton. 2006. “On the Bias of the Multiple- Imputation Variance Estimator in Survey Sampling.” Journal of the Royal Statistical Society Series B 68: 509-521. DOI: http://dx.doi.org/10.1111/j.1467-9868.2006.00546.x.10.1111/j.1467-9868.2006.00546.x
  8. Kott, P.S. 1995. A Paradox of Multiple Imputation. Tech. rep., National Agricultural Statistics Service, Fairfax, VA. Presented at the Joint Statistical Meetings, August 1995, Orlando, FL Kott, P.S., and T. Chang. 2010. “Using Calibration Weighting to Adjust for Nonignorable Unit Nonresponse.” Journal of the American Statistical Association 105: 1265-1275. DOI: http://dx.doi.org/10.1198/jasa.2010.tm09016.10.1198/jasa.2010.tm09016
  9. Kwon, C.-W., P. Orazem, and D.M. Otto. 2006. “Off-Farm Labor Supply Responses to Permanent and Transitory Farm Income.” Agricultural Economics 34: 59-67. DOI: http://dx.doi.org/10.1111/j.1574-0862.2006.00103.x.10.1111/j.1574-0862.2006.00103.x
  10. Little, R.J.A. 1988. “Missing-Data Adjustments in Large Surveys.” Journal of Business & Economic Statistics 6: 287-296. DOI: http://dx.doi.org/10.1080/07350015.1988.10509663.10.1080/07350015.1988.10509663
  11. Little, R.J.A., and D.B. Rubin. 2002. Statistical Analysis with Missing Data. Hoboken, NJ: John Wiley & Sons.10.1002/9781119013563
  12. Manrique-Vallier, D., and J.P. Reiter. 2014. “Bayesian Multiple Imputation for Large- Scale Categorical Data With Structural Zeros.” Survey Methodology 40: 125-134.
  13. Miller, D., M. Robbins, and J. Habiger. 2010. “Examining the Challenges of Missing Data Analysis in Phase Three of the Agricultural Resource Management Survey.” In Proceedings of the JSM, Section on Survey Research Methods: American Statistical Association. Alexandria, VA, 816-823.
  14. Mishra, A.K., and D.M. Holthausen. 2002. “Effect of Farm Income and Off-Farm Wage Variability on Off-Farm Labor Supply.” Agricultural and Resource Economics Review 31: 187-199.10.1017/S1068280500003993
  15. National Research Council. 2008. Understanding American Agriculture: Challenges for the Agricultural Resource Management Survey. Washington, D.C.: The National Academies Press.
  16. Nelsen, R.B. 2009. An introduction to Copulas. New York: Springer.
  17. Raghunathan, T., J. Lepkowski, J. van Hoewyk, and P. Solenberger. 2001. “A Multivariate Technique for Multiply Imputing Missing Values Using a Sequence of Regression Models.” Survey Methodology 27: 85-95.
  18. Raghunathan, T.E., P.W. Solenberger, and J. van Hoewyk. 2002. Iveware: Imputation and Variance Estimation Software. Ann Arbor, MI: Survey Methodology Program, Survey Research Center, Institute for Social Research, University of Michigan.
  19. Raghunathan, T., J. Reiter, and D. Rubin. 2003. “Multiple Imputation for Statistical Disclosure Limitation.” Journal of Official Statistics 19: 1-16.
  20. Reiter, J.P. 2002. “Satisfying Disclosure Restrictions With Synthetic Data Sets.” Journal of Official Statistics 18: 531-544.
  21. Reiter, J.P. 2005. “Releasing Multiply Imputed, Synthetic Public Use Microdata: An Illustration and Empirical Study.” Journal of the Royal Statistical Society Series A 168: 185-205. DOI: http://dx.doi.org/10.1111/j.1467-985X.2004.00343.x.10.1111/j.1467-985X.2004.00343.x
  22. Robbins, M.W., S.K. Ghosh, B. Goodwin, J.D. Habiger, D. Miller, and T.K. White. 2011. Multivariate Imputation Methods for Addressing Missing Data in the Agricultural Resource Management Survey (ARMS). A NISS/NASS collaborative research project, National Agricultural Statistics Service/National Institute of Statistical Sciences.
  23. Robbins, M.W., and T.K. White. 2011. “Farm Commodity Payments and Imputation in the Agricultural Resource Management Survey.” American Journal of Agricultural Economics 93: 606-612. DOI: http://dx.doi.org/10.1093/ajae/aaq166.10.1093/ajae/aaq166
  24. Robbins, M.W., S.K. Ghosh, and J.D. Habiger. 2013. “Imputation in High-Dimensional Economic Data as Applied to the Agricultural Resource Management Survey.” Journal of the American Statistical Association 108: 81-95. DOI: http://dx.doi.org/10.1080/01621459.2012.734158.10.1080/01621459.2012.734158
  25. Robbins, M.W., and T.K. White. Forthcoming. “Direct Payments, Cash Rents, Land Values, and the Effects of Imputation in U.S. Farm-Level Data.” Agricultural and Resource Economics Review.
  26. Rubin, D.B. 1987. Multiple Imputation for Nonresponse in Surveys. New York: John Wiley & Sons.10.1002/9780470316696
  27. Rubin, D.B. 1993. “Discussion of Statistical Disclosure Limitation.” Journal of Official Statistics 9: 461-468.
  28. Rubin, D.B. 1996. “Multiple Imputation After 18 þ Years.” Journal of the American Statistical Association 91: 473-489. DOI: http://dx.doi.org/10.1080/01621459.1996.10476908.10.1080/01621459.1996.10476908
  29. Schafer, J.L. 1997. Analysis of Incomplete Multivariate Data. New York: Chapman and Hall/CRC.10.1201/9781439821862
  30. Scott, D.W. 2009. Multivariate Density Estimation: Theory, Practice, and Visualization. Vol. 383. New York: Wiley.
  31. Sheather, S.J., and M.C. Jones. 1991. “A Reliable Data-Based Bandwidth Selection Method for Kernel Density Estimation.” Journal of the Royal Statistical Society Series B 53: 683-690.10.1111/j.2517-6161.1991.tb01857.x
  32. Silverman, B.W. 1986. Density Estimation for Statistics and Data Analysis. Vol. 26. New York: CRC Press.
  33. Su, Y.-S., M. Yajima, A.E. Gelman, and J. Hill. 2011. “Multiple Imputation with Diagnostics (mi) in r: Opening Windows into the Black Box.” Journal of Statistical Software 45: 1-31.10.18637/jss.v045.i02
  34. Sumner, D.A. 1982. “The Off-Farm Labor Supply of Farmers.” American Journal of Agricultural Economics 64: 499-509. DOI: http://dx.doi.org/10.2307/1240642.10.2307/1240642
  35. Templ, M., A. Kowarik, and P. Filzmoser. 2011. “Iterative Stepwise Regression Imputation Using Standard and Robust Methods.” Computational Statistics & Data Analysis 55: 2793-2806. DOI: http://dx.doi.org/10.1016/j.csda.2011.04.012.10.1016/j.csda.2011.04.012
  36. U.S. Department of Agriculture. 2011. Farm Production Expenditures 2010 Summary. Washington, D.C.
  37. Van Buuren, S., and C.G.M. Oudshoorn. 1999. Flexible Multivariate Imputation by0 MICE.
  38. Leiden: TNO Preventie en Gezondheid. For associated software see http://www.multiple-imputation.com (accessed October 21, 2014).
  39. Woodcock, S.D., and G. Benedetto. 2009. “Distribution-Preserving Statistical Disclosure Limitation.” Computational Statistics and Data Analysis 53: 4228-4242. DOI: http://dx.doi.org/10.1016/j.csda.2009.05.020. 10.1016/j.csda.2009.05.020
Language: English
Page range: 675 - 700
Submitted on: Nov 1, 2012
Accepted on: Sep 1, 2014
Published on: Dec 11, 2014
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2014 Michael W. Robbins, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.