Dempster, A.P., N.M. Laird, and D.B. Rubin. 1977. “Maximum Likelihood From Incomplete Data via the EM Algorithm (with discussion).” Journal of the Royal Statistical Society Series B 39: 1-38.
Huffman, W.E., and M.D. Lange. 1989. “Off-Farm Work Decisions of Husbands and Wives: Joint Decision Making.” The Review of Economics and Statistics 71: 471-480. DOI: http://dx.doi.org/10.2307/1926904.10.2307/1926904
Javaras, K.N., and D.A. van Dyk. 2003. “Multiple Imputation for Incomplete Data with Semicontinuous Variables.” Journal of the American Statistical Association 98: 703-715. DOI: http://dx.doi.org/10.1198/016214503000000611.10.1198/016214503000000611
Kim, J.K., J.M. Brick, W.A. Fuller, and G. Kalton. 2006. “On the Bias of the Multiple- Imputation Variance Estimator in Survey Sampling.” Journal of the Royal Statistical Society Series B 68: 509-521. DOI: http://dx.doi.org/10.1111/j.1467-9868.2006.00546.x.10.1111/j.1467-9868.2006.00546.x
Kott, P.S. 1995. A Paradox of Multiple Imputation. Tech. rep., National Agricultural Statistics Service, Fairfax, VA. Presented at the Joint Statistical Meetings, August 1995, Orlando, FL Kott, P.S., and T. Chang. 2010. “Using Calibration Weighting to Adjust for Nonignorable Unit Nonresponse.” Journal of the American Statistical Association 105: 1265-1275. DOI: http://dx.doi.org/10.1198/jasa.2010.tm09016.10.1198/jasa.2010.tm09016
Manrique-Vallier, D., and J.P. Reiter. 2014. “Bayesian Multiple Imputation for Large- Scale Categorical Data With Structural Zeros.” Survey Methodology 40: 125-134.
Miller, D., M. Robbins, and J. Habiger. 2010. “Examining the Challenges of Missing Data Analysis in Phase Three of the Agricultural Resource Management Survey.” In Proceedings of the JSM, Section on Survey Research Methods: American Statistical Association. Alexandria, VA, 816-823.
Mishra, A.K., and D.M. Holthausen. 2002. “Effect of Farm Income and Off-Farm Wage Variability on Off-Farm Labor Supply.” Agricultural and Resource Economics Review 31: 187-199.10.1017/S1068280500003993
National Research Council. 2008. Understanding American Agriculture: Challenges for the Agricultural Resource Management Survey. Washington, D.C.: The National Academies Press.
Raghunathan, T., J. Lepkowski, J. van Hoewyk, and P. Solenberger. 2001. “A Multivariate Technique for Multiply Imputing Missing Values Using a Sequence of Regression Models.” Survey Methodology 27: 85-95.
Raghunathan, T.E., P.W. Solenberger, and J. van Hoewyk. 2002. Iveware: Imputation and Variance Estimation Software. Ann Arbor, MI: Survey Methodology Program, Survey Research Center, Institute for Social Research, University of Michigan.
Reiter, J.P. 2005. “Releasing Multiply Imputed, Synthetic Public Use Microdata: An Illustration and Empirical Study.” Journal of the Royal Statistical Society Series A 168: 185-205. DOI: http://dx.doi.org/10.1111/j.1467-985X.2004.00343.x.10.1111/j.1467-985X.2004.00343.x
Robbins, M.W., S.K. Ghosh, B. Goodwin, J.D. Habiger, D. Miller, and T.K. White. 2011. Multivariate Imputation Methods for Addressing Missing Data in the Agricultural Resource Management Survey (ARMS). A NISS/NASS collaborative research project, National Agricultural Statistics Service/National Institute of Statistical Sciences.
Robbins, M.W., and T.K. White. 2011. “Farm Commodity Payments and Imputation in the Agricultural Resource Management Survey.” American Journal of Agricultural Economics 93: 606-612. DOI: http://dx.doi.org/10.1093/ajae/aaq166.10.1093/ajae/aaq166
Robbins, M.W., S.K. Ghosh, and J.D. Habiger. 2013. “Imputation in High-Dimensional Economic Data as Applied to the Agricultural Resource Management Survey.” Journal of the American Statistical Association 108: 81-95. DOI: http://dx.doi.org/10.1080/01621459.2012.734158.10.1080/01621459.2012.734158
Robbins, M.W., and T.K. White. Forthcoming. “Direct Payments, Cash Rents, Land Values, and the Effects of Imputation in U.S. Farm-Level Data.” Agricultural and Resource Economics Review.
Sheather, S.J., and M.C. Jones. 1991. “A Reliable Data-Based Bandwidth Selection Method for Kernel Density Estimation.” Journal of the Royal Statistical Society Series B 53: 683-690.10.1111/j.2517-6161.1991.tb01857.x
Su, Y.-S., M. Yajima, A.E. Gelman, and J. Hill. 2011. “Multiple Imputation with Diagnostics (mi) in r: Opening Windows into the Black Box.” Journal of Statistical Software 45: 1-31.10.18637/jss.v045.i02
Sumner, D.A. 1982. “The Off-Farm Labor Supply of Farmers.” American Journal of Agricultural Economics 64: 499-509. DOI: http://dx.doi.org/10.2307/1240642.10.2307/1240642
Templ, M., A. Kowarik, and P. Filzmoser. 2011. “Iterative Stepwise Regression Imputation Using Standard and Robust Methods.” Computational Statistics & Data Analysis 55: 2793-2806. DOI: http://dx.doi.org/10.1016/j.csda.2011.04.012.10.1016/j.csda.2011.04.012
Woodcock, S.D., and G. Benedetto. 2009. “Distribution-Preserving Statistical Disclosure Limitation.” Computational Statistics and Data Analysis 53: 4228-4242. DOI: http://dx.doi.org/10.1016/j.csda.2009.05.020.10.1016/j.csda.2009.05.020