Have a personal or library account? Click to login
Parthenocarpy and Its Effect on Vegetable Fruits Quality: A Review Cover

Parthenocarpy and Its Effect on Vegetable Fruits Quality: A Review

Open Access
|Dec 2025

References

  1. Baddigam K.R., Vijayreddy D., Chandra K.B., Emmi S.R., Hegde S.S. 2024. Parthenocarpy in vegetable crops. Trends in Agriculture Science 3(6): 2016-2022. DOI: 10.5281/trendsinagri.13144048.
  2. Bagheri L., Lotfi M., Nori M. 2021. Production of haploid embryos and plants in Iranian melon (Cucumis melo L.) through irradiated pollen-induced parthenogenesis. In: Sivasankar S., Ellis N., Jankuloski L., Ingelbrecht I. (Eds.), Mutation Breeding, Genetic Diversity and Crop Adaptation to Climate Change. CABI, UK, pp. 127–133. DOI: 10.1079/9781789249095.0013.
  3. Chaudhari V.M., Barot D.C., Patel N.A., Vaghela A.G. 2024. Utility of parthenocarpy in vegetable crops: a review. Advances in Research 25(4): 488–496. DOI: 10.9734/air/2024/v25i41128.
  4. Cong L., Wu T., Liu H., Wang H., Zhang H., Zhao G. et al. 2020. CPPU may induce gibberellin-independent parthenocarpy associated with PbRR9 in ‘Dangshansu’ pear. Horticulture Research 7; 68; 13 p. DOI: 10.1038/s41438-020-0285-5.
  5. Davis A.R., Webber C.L., Liu W., Perkins-Veazie P., Levi A., King S. 2013. Watermelon quality traits as affected by ploidy. HortScience 48(9): 1113–1118. DOI: 10.21273/hortsci.48.9.1113.
  6. Dhatt A., Kaur G. 2016. Parthenocarpy: A potential trait to exploit in vegetable crops: A review. Agricultural Reviews 37(4): 300–308. DOI: 10.18805/ag.v37i4.6460.
  7. Ding J., Chen B., Xia X., Mao W., Shi K., Zhou Y., Yu J. 2013. Cytokinin-induced parthenocarpic fruit development in tomato is partly dependent on enhanced gibberellin and auxin biosynthesis. PLoS ONE 8(7); e70080; 11 p. DOI: 10.1371/journal.pone.0070080.
  8. Dominic S., Hussain A.I., Chatha S.A.S., Ali Q., Aslam N., Sarker S.D. et al. 2021. Phenolic profile, nutritional composition, functional properties, and anti-oxidant activity of newly grown parthenocarpic and normal seeded tomato. Journal of Chemistry 2021, 8826325, 11 p. DOI: 10.1155/2021/8826325.
  9. Ebrahimzadeh H., Lotfi M., Sadat-Hosseini M. 2021. Parthenogenetic haploid plant production in Styrian pumpkin by gamma irradiated pollen. International Journal of Horticultural Science and Technology 8(3): 305–314. DOI: 10.22059/ijhst.2021.294838.331.
  10. Fayaz Z., Nazir G., Masoodi U.H., Afroza B., Wani A.S., Rashid M. 2021. Parthenocarpy: “A potential trait to exploit in vegetable crops”. Environment and Ecology 39(4A): 1332–1346.
  11. Ganvit J.M., Hathi H.s., Ganvit A.M., Mallikarjuna K.N., Malviya A., Gohil V. 2024. Role of parthenocarpy in vegetable crops. Just Agriculture E-Newsletter 4(5); 5 p.
  12. Hassan J., Miyajima I. 2019. Induction of parthenocarpy in pointed gourd (Trichosanthes dioica Roxb.) by application of plant growth regulators. Journal of Horticulture and Plant Research 8: 12–21. DOI: 10.18052/www.scipress.com/jhpr.8.12.
  13. Hassan J., Miyajima I., Ozaki Y., Mizunoe Y., Sakai K., Zaland W. 2020. Tetraploid induction by colchicine treatment and crossing with a diploid reveals less-seeded fruit production in pointed gourd (Trichosanthes dioica Roxb.). Plants 9(3); 370; 16 p. DOI: 10.3390/plants9030370.
  14. He M., Song S., Zhu X., Lin Y., Pan Z., Chen L. et al. 2021. SlTPL1 silencing induces facultative parthenocarpy in tomato. Frontiers in Plant Science 12; 672232; 14 p. DOI: 10.3389/fpls.2021.672232.
  15. Honda I., Matsunaga H., Kikuchi K., Matsuo S., Fukuda M. 2012. Identification of pepper (Capsicum annuum L.) accessions with large or small fruit that have a high degree of parthenocarpy. Scientia Horticulturae 135: 68–70. DOI: 10.1016/j.scienta.2011.12.014.
  16. Hossain A.B.M.S., Alenazi M.M., Taha R.M. 2021. Seedless okra production by indole 3-acetic acid micro syringe injection on flower bud, ovary and shoot xylem and its vitamin and mineral content development: An innovation. Scientia Horticulturae 283; 110010. DOI: 10.1016/j.scienta.2021.110010
  17. Indian G., Senthilkumar S., Manivannan S. 2023. Physiological interventions in induction of parthenocarpy with fruits and vegetables: a review. Emergent Life Sciences Research 9(2): 276–286. DOI: 10.31783/elsr.2023.92276286.
  18. Jat G.S., Munshi A.D., Behera T.K., Bhardwaj C. 2017. Inheritance of parthenocarpy in gynoecious cucumber (Cucumis sativus L.) cultivar PPC-2. Journal of Horticultural Sciences 12(2): 193–197.
  19. Joldersma D., Liu Z. 2018. The making of virgin fruit: the molecular and genetic basis of parthenocarpy. Journal of Experimental Botany 69(5): 955–962. DOI: 10.1093/jxb/erx446.
  20. Kawamura S., Ida K., Osawa M., Ikeda T. 2018. No effect of seed presence or absence on sugar content and water status of seeded and seedless watermelon fruits. HortScience 53(3): 304–312. DOI: 10.21273/hortsci12707-17.
  21. Kim J.-S., Ezura K., Lee J., Ariizumi T., Ezura H. 2019. Genetic engineering of parthenocarpic tomato plants using transient SlIAA9 knockdown by novel tissue-specific promoters. Scientific Reports 9; 18871; 11 p. DOI: 10.1038/s41598-019-55400-7.
  22. Klap C., Yeshayahou E., Bolger A.M., Arazi T., Gupta S.K., Shabtai S. et al. 2017. Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6 loss of function. Plant Biotechnology Journal 15(5): 634–647. DOI: 10.1111/pbi.12662.
  23. Kondo F., Hatakeyama K., Sakai A., Minami M., Nemoto K., Matsushima K. 2021. Parthenocarpy induced fluctuations in pungency and expression of capsaicinoid biosynthesis genes in a Japanese pungency-variable sweet chili pepper ‘Shishito’ (Capsicum annuum). Horticulture Journal 90(1): 48–57. DOI: 10.2503/hortj.utd-216.
  24. Kyriacou M.C., Soteriou G.A., Rouphael Y. 2020. Modula-tory effects of interspecific and gourd rootstocks on crop performance, physicochemical quality, bioactive components and postharvest performance of diploid and triploid watermelon scions. Agronomy 10(9); 1396; 14 p. DOI: 10.3390/agronomy10091396.
  25. Liu L., Wang Z., Liu J., Liu F., Zhai R., Zhu C. et al. 2018. Histological, hormonal and transcriptomic reveal the changes upon gibberellin-induced parthenocarpy in pear fruit. Horticulture Research 5; 1; 13 p. DOI: 10.1038/s41438-017-0012-z.
  26. Makrogianni D.I., Karapanos I.C., Passam H.C. 2018. Seasonal fluctuations in pollen production and viability in eggplant and the quality of seed-containing and seedless (auxin-set) fruits. Journal of Plant Growth Regulation 37(3): 937–946. DOI: 10.1007/s00344-018-9791-1.
  27. Mandal N.K., Kumari K., Kundu A., Arora A., Bhowmick P.K., Iquebal M.A. et al. 2022. Crosstalk between the cytokinin, auxin, and gibberellin regulatory networks in determining parthenocarpy in cucumber. Frontiers in Genetics 13; 957360; 18 p. DOI: 10.3389/fgene.2022.957360.
  28. Maupilé L., Chaib J., Boualem A., Bendahmane A. 2024. Parthenocarpy, a pollination-independent fruit set mechanism to ensure yield stability. Trends in Plant Science 29(11): 1254–1265. DOI: 10.1016/j.tplants.2024.06.007.
  29. Meng Y., Zhu P., Gou C., Cheng C., Li J., Chen J. 2024. Auxin and ethylene play important roles in parthenocarpy under low-temperature stress revealed by transcriptome analysis in cucumber (Cucumis sativus L.). Journal of Plant Growth Regulation 43(4): 1137–1152. DOI: 10.1007/s00344-023-11172-z.
  30. Molesini B., Dusi V., Pennisi F., Pandolfini T. 2020. How hormones and MADS-box transcription factors are involved in controlling fruit set and parthenocarpy in tomato. Genes 11(12); 1441; 17 p. DOI: 10.3390/genes11121441.
  31. Nitsch J.P. 1970. Hormonal factors in growth and development. In: Hulme A.C. (Ed.), The Biochemistry of Fruits and Their Products, vol. 1. Academic Press, pp. 427–472.
  32. Niu S., He Y., Yan S., Sun Z., Cai R., Zhang Y. 2024. Histological, transcriptomic, and gene functional analyses reveal the regulatory events underlying gibberellin-induced parthenocarpy in tomato. Horticultural Plant Journal 10(1): 156–170. DOI: 10.1016/j.hpj.2023.01.002.
  33. Ogawa M., Takisawa R. 2022. Effect of exogenous plant hormones on parthenocarpy and fruit quality in tropical squash (Cucurbita moschata L.). Horticulture Journal 91(4): 508–513. DOI: 10.2503/hortj.utd-368.
  34. de Oliveira M.M.T., Alves R.E., da Silva L.R., Barreto N.D. 2020. Prospection of the quality and bioactive potential of the seedless watermelon. Scientia Plena 16(5); 8 p. DOI: 10.14808/sci.plena.2020.050202.
  35. Patel A.R., Mori C.V., Parmar V.K., Verma P. 2022. Parthenocarpic vegetables: Importance and approaches: A review. Pharma Innovation 11(12): 5183–5188.
  36. Qian C., Ren N., Wang J., Xu Q., Chen X., Qi X. 2018. Effects of exogenous application of CPPU, NAA and GA4+7 on parthenocarpy and fruit quality in cucumber (Cucumis sativus L.). Food Chemistry 243: 410–413. DOI: 10.1016/j.foodchem.2017.09.150.
  37. Sharif R., Su L., Chen X., Qi X. 2022. Hormonal interactions underlying parthenocarpic fruit formation in horticultural crops. Horticulture Research 9; uhab024; 17 p. DOI: 10.1093/hr/uhab024.
  38. Sravani V., Ashok P., Sasikala K., Babu B.R. 2018. Induction of parthenocarpy through growth regulators in watermelon (Citrullus lanatus Thunb.). International Journal of Chemical Studies 6(6): 182–184.
  39. Su L., Rahat S., Ren N., Kojima M., Takebayashi Y., Sakakibara H. et al. 2021. Cytokinin and auxin modulate cucumber parthenocarpy fruit development. Scientia Horticulturae 282; 110026; 10 p. DOI: 10.1016/j.scienta.2021.110026.
  40. Sugiyama K., Kami D., Muro T. 2014. Induction of parthenocarpic fruit set in watermelon by pollination with bottle gourd (Lagenaria siceraria (Molina) Standl.) pollen. Scientia Horticulturae 171: 1–5. DOI: 10.1016/j.scienta.2014.03.008.
  41. Takisawa R., Ogawa M., Maai E., Nishimura K., Nakano R., Nakazaki T. 2021. Characterization of parthenocarpic fruit of ‘Miyazaki-wase No. 1’, a tropical squash (Cucurbita moschata L.) cultivar. Horticulture Journal 90(1): 68–74. DOI: 10.2503/hortj.utd-219.
  42. Wang M., Su L., Cong Y., Chen J., Geng Y., Qian C. et al. 2021. Sugars enhance parthenocarpic fruit formation in cucumber by promoting auxin and cytokinin signaling. Scientia Horticulturae 283; 110061. DOI: 10.1016/j.scienta.2021.110061.
  43. Wijesinghe S.A.E.C., Evans L.J., Kirkland L., Rader R. 2020. A global review of watermelon pollination biology and ecology: The increasing importance of seedless cultivars. Scientia Horticulturae 271; 109493. DOI: 10.1016/j.scienta.2020.109493.
  44. Zain A.R., Lapanjang Z.B.I. 2015. Pembentukan buah terung (Solanum melongena L.) partenokarpi melalui aplikasi berbagai konsentrasi giberelin. Jurnal Sains dan Teknologi Tadulako 4(2): 60–67. [in Indonesian with English abstract]
DOI: https://doi.org/10.2478/johr-2025-0017 | Journal eISSN: 2353-3978 | Journal ISSN: 2300-5009
Language: English
Submitted on: May 1, 2025
Accepted on: Nov 1, 2025
Published on: Dec 8, 2025
Published by: National Institute of Horticultural Research
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Mohammadullah Amin, Mohammad Khalid Rashidi, Mudir Atif, Zabihullah Faizi, published by National Institute of Horticultural Research
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT