Have a personal or library account? Click to login
Olive Tree Vegetative Growth and Fruit Yield at High Air Temperatures Cover

Olive Tree Vegetative Growth and Fruit Yield at High Air Temperatures

Open Access
|Jun 2025

References

  1. Aguilera F., Valenzuela L.R. 2012. Microclimatic-induced fluctuations in the flower and pollen production rate of olive trees (Olea europaea L.). Grana 51(3): 228–239. DOI: 10.1080/00173134.2012.659203.
  2. Aguilera F., Orlandi F., Ruiz L., Galán C., Mozo H.G., Bonofiglio T. et al. 2013. La floración del olivo (Olea europea L.) como elemento bioindicador de cambios en el clima mediterráneo: análisis preliminar. El Aceite de Oliva. Proceedings of the Expoliva Symposium. Spain, May 8–11, 8 p. [in Spanish]
  3. Alcalá A.R., Barranco D. 1992. Prediction of flowering time in olive for the Cordoba olive collection. HortScience 27(11): 1205–1207. DOI: 10.21273/hortsci.27.11.1205.
  4. Aybar V.E., de Melo-Abreu J.P., Searles P.S., Matias A.C., del Río C., Caballero J.M., Rousseaux M.C. 2015. Evaluation of olive flowering at low latitude sites in Argentina using a chilling requirement model. Spanish Journal of Agricultural Research 13(1); e09-001; 10 p. DOI: 10.5424/sjar/2015131-6375.
  5. Ben-Ari G., Biton I., Many Y., Namdar D., Samach A. 2021. Elevated temperatures negatively affect olive productive cycle and oil quality. Agronomy 11(8); 1492; 16 p. DOI: 10.3390/agronomy11081492.
  6. Benlloch-González M., Sánchez-Lucas R., Benlloch M., Fernández-Escobar R. 2018. An approach to global warming effects on flowering and fruit set of olive trees growing under field conditions. Scientia Horticulturae 240: 405–410. DOI: 10.1016/j.scienta.2018.06.054.
  7. Blázquez J.M. 1996. The origin and expansion of olive cultivation. World Olive Encyclopaedia, 1st ed. International Olive Oil Council, Spain, pp. 19–20.
  8. Campello F. 2022. Sustentabilidade dos Olivais em Portugal: Desafios e respostas. Princípia, 176 p. [in Portuguese]
  9. Cardoni M., Mercado-Blanco J. 2023. Confronting stresses affecting olive cultivation from the holobiont perspective. Frontiers in Plant Science 14; 1261754; 31 p. DOI: 10.3389/fpls.2023.1261754.
  10. Cuevas J., Rallo L., Rapoport H.F. 1994. Initial fruit set at high temperature in olive, Olea europaea L. Journal of Horticultural Science 69(4): 665–672. DOI: 10.1080/14620316.1994.11516498.
  11. Davies W.J., Zhang J. 1991. Root signals and the regulation of growth and development of plants in drying soil. Annual Review of Plant Physiology and Plant Molecular Biology 42(1): 55–76. DOI: 10.1146/annurev.pp.42.060191.000415.
  12. Di Paola A., Chiriacò M.V., Di Paola F., Nieddu G. 2021. A phenological model for olive (Olea europaea L. var europaea) growing in Italy. Plants 10(6); 1115; 15 p. DOI: 10.3390/plants10061115.
  13. Di Paola A., Di Giuseppe E., Gutierrez A.P., Ponti L., Pasqui M. 2023. Climate stressors modulate inter-annual olive yield at province level in Italy: A composite index approach to support crop management. Journal of Agronomy and Crop Science 209(4): 475–488. DOI: 10.1111/jac.12636.
  14. Diaz-Espejo A., Nicolás E., Fernández J.E. 2007. Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought. Plant, Cell and Environment 30(8): 922–933. DOI: 10.1111/j.1365-3040.2007.001686.x.
  15. Didevarasl A., Costa Saura J.M., Spano D., Deiana P., Snyder R.L., Mulas M. et al. 2023. Modeling phenological phases across olive cultivars in the Mediterranean. Plants 12(18); 3181; 20 p. DOI: 10.3390/plants12183181.
  16. Droulia F., Charalampopoulos I. 2022. A review on the observed climate change in Europe and its impacts on viticulture. Atmosphere 13(5); 837; 35 p. DOI: 10.3390/atmos13050837.
  17. Falcioni R., Chicati M.L., de Oliveira R.B., Antunes W.C., Hasanuzzaman M., Demattê J.A.M., Nanni M.R. 2024. Decreased photosynthetic efficiency in Nicotiana tabacum L. under transient heat stress. Plants 13(3); 395; 17 p. DOI: 10.3390/plants13030395.
  18. Fraga H., Pinto J.G., Santos J.A. 2020. Olive tree irrigation as a climate change adaptation measure in Alentejo, Portugal. Agricultural Water Management 237; 106193; 9 p. DOI: 10.1016/j.agwat.2020.106193.
  19. Fraga H., Moriondo M., Leolini L., Santos J.A. 2021. Mediterranean olive orchards under climate change: a review of future impacts and adaptation strategies. Agronomy 11(1); 56; 15 p. DOI: 10.3390/agronomy11010056.
  20. Fraga H., Guimarães N., Freitas T.R., Malheiro A.C., Santos J.A. 2022. Future scenarios for olive tree and grapevine potential yields in the World Heritage Côa region, Portugal. Agronomy 12(2); 350; 14 p. DOI: 10.3390/agronomy12020350.
  21. Garrido A., Fernández-González M., Vázquez-Ruiz R.A., Rodríguez-Rajo F.J., Aira M.J. 2021. Reproductive biology of olive trees (Arbequina cultivar) at the northern limit of their distribution areas. Forests 12(2); 204; 16 p. DOI: 10.3390/f12020204.
  22. Giorgi F., Lionello P. 2008. Climate change projections for the Mediterranean region. Global and Planetary Change 63(2–3): 90–104. DOI: 10.1016/j.gloplacha.2007.09.005.
  23. Hackett W.P., Hartmann H.T. 1967. The influence of temperature on floral initiation in the olive. Physiologia Plantarum 20(2): 430–436. DOI: 10.1111/j.1399-3054.1967.tb07183.x.
  24. Haworth M., Marino G., Brunetti C., Killi D., De Carlo A., Centritto M. 2018a. The impact of heat stress and water deficit on the photosynthetic and stomatal physiology of olive (Olea europaea L.) – A case study of the 2017 heat wave. Plants 7(4); 76; 13 p. DOI: 10.3390/plants7040076.
  25. Haworth M., Marino G., Cosentino S.L., Brunetti C., De Carlo A., Avola G. et al. 2018b. Increased free abscisic acid during drought enhances stomatal sensitivity and modifies stomatal behaviour in fast growing giant reed (Arundo donax L.). Environmental and Experimental Botany 147: 116–124. DOI: 10.1016/j.envexpbot.2017.11.002.
  26. Hernandez-Santana V., Fernández J.E., Cuevas M.V., Perez-Martin A., Diaz-Espejo A. 2017. Photosynthetic limitations by water deficit: Effect on fruit and olive oil yield, leaf area and trunk diameter and its potential use to control vegetative growth of super-high density olive orchards. Agricultural Water Management 184: 9–18. DOI: 10.1016/j.agwat.2016.12.016.
  27. Inês C., Gomez-Jimenez M.C., Cordeiro A.M. 2023. Inflorescence emergence and flowering response of olive cultivars grown in Olive Reference Collection of Portugal (ORCP). Plants 12(11); 2086; 16 p. DOI: 10.3390/plants12112086.
  28. IOC 1997. Methodology for the primary and secondary char-acterisation of olive varieties. International Olive Council. European Union, RESGEN-CT project (96/97).
  29. IPMA 2023. Boletim Anual 2022. Portuguese Institute of Sea and Atmosphere, Version 1.0, 29 p. https://www.ipma.pt/resources.www/docs/im.publicacoes/edicoes.online/20230328/RLuazVlyZulVPByQUNey/cli_20220101_20221231_pcl_aa_co_pt.pdf [in Portuguese]
  30. Kalfas I., Anagnostopoulou C., Manios E.M. 2023. The impact of climate change on olive crop production in Halkidiki, Greece. Environmental Sciences Proceedings 26(1); 69; 6 p. DOI: 10.3390/environsciproc2023026069.
  31. Koubouris G.C., Metzidakis I.T., Vasilakakis M.D. 2009. Impact of temperature on olive (Olea europaea L.) pollen performance in relation to relative humidity and geno-type. Environmental and Experimental Botany 67(1): 209–214. DOI: 10.1016/j.envexpbot.2009.06.002.
  32. Landis J.R., Koch G.G. 1977. The measurement of observer agreement for categorical data. Biometrics 33(1): 159–174. DOI: 10.2307/2529310.
  33. Lavee S. 1996. Biology and physiology of the olive. World Olive Encyclopaedia, 1st ed. International Olive Oil Council, Spain, pp. 59–110.
  34. Lorite I.J., Gabaldón-Leal C., Ruiz-Ramos M., Belaj A., de la Rosa R., León L., Santos C. 2018. Evaluation of olive response and adaptation strategies to climate change under semi-arid conditions. Agricultural Water Management 204: 247–261. DOI: 10.1016/j.agwat.2018.04.008.
  35. Mafrica R., Piscopo A., De Bruno A., Poiana M. 2021. Effects of climate on fruit growth and development on olive oil quality in cultivar Carolea. Agriculture 11(2); 147; 17 p. DOI: 10.3390/agriculture11020147.
  36. MAM 2015. Plano Nacional para os Recursos Genéticos Vegetais. Ministry of Agriculture and the Sea. Lisbon, Portugal, 30 p. https://www.iniav.pt/images/INIAV/organica/BPGV/pnrgv_web.pdf [in Portuguese]
  37. Marino G., Pallozzi E., Cocozza C., Tognetti R., Giovannelli A., Cantini C., Centritto M. 2014. Assessing gas exchange, sap flow and water relations using tree canopy spectral reflectance indices in irrigated and rainfed Olea europaea L. Environmental and Experimental Botany 99: 43–52. DOI: 10.1016/j.envexpbot.2013.10.008.
  38. de Melo-Abreu J.P., Barranco D., Cordeiro A.M., Tous J., Rogado B.M., Villalobos F.J. 2004. Modelling olive flowering date using chilling for dormancy release and thermal time. Agricultural and Forest Meteorology 125(1–2): 117–127. DOI: 10.1016/j.agrformet.2004.02.009.
  39. Navas-Lopez J.F., León L., Rapoport H.F., Moreno-Alías I., Lorite I.J., de la Rosa R. 2019. Genotype, environment and their interaction effects on olive tree flowering phenology and flower quality. Euphytica 215; 184; 13 p. DOI: 10.1007/s10681-019-2503-5.
  40. Nissim Y., Shloberg M., Biton I., Many Y., Doron-Faigenboim A., Zemach H. et al. 2020. High temperature environment reduces olive oil yield and quality. PLoS One 15(4); e0231956; 24 p. DOI: 10.1371/journal.pone.0231956.
  41. Orlandi F., Rojo J., Picornell A., Oteros J., Pérez-Badia R., Fornaciari M. 2020. Impact of climate change on olive crop production in Italy. Atmosphere 11(6); 595; 15 p. DOI: 10.3390/atmos11060595.
  42. Osborne C.P., Chuine I., Viner D., Woodward F.I. 2000. Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean. Plant, Cell and Environment 23(7): 701–710. DOI: 10.1046/j.1365-3040.2000.00584.x.
  43. Parri S., Romi M., Hoshika Y., Giovannelli A., Dias M.C., Piritore F.C. et al. 2023. Morpho-physiological responses of three Italian olive tree (Olea europaea L.) cultivars to drought stress. Horticulturae 9(7); 830; 19 p. DOI: 10.3390/horticulturae9070830.
  44. Petruccelli R., Bartolini G., Ganino T., Zelasco S., Lombardo L., Perri E. et al. 2022. Cold stress, freezing adaptation, varietal susceptibility of Olea europaea L.: A review. Plants 11(10); 1367; 24 p. DOI: 10.3390/plants11101367.
  45. Picornell A., Abreu I., Ribeiro H. 2023. Trends and future projections of Olea flowering in the western Mediterranean: The example of the Alentejo region (Portugal). Agricultural and Forest Meteorology 339; 109559; 11 p. DOI: 10.1016/j.agrformet.2023.109559.
  46. Rallo L. 2005. Las variedades del olivo en España: una aproximación cronológica. In: Rallo L., Barranco D., Caballero J.M., del Río C., Martín A., Tous J., Trujillo I. (Eds.), Variedades de Olivo en España. Mundi-Prensa, Spain, pp. 15–44. [in Spanish]
  47. Rallo L., Cuevas J. 2008. Fructificación y producción. In: Barranco D., Fernández-Escobar R., Rallo L. (Eds.), El cultivo del Olivo, 6th ed. Mundi-Prensa, Spain, pp. 127–162. [in Spanish]
  48. Rapoport H.F., Hammami S.B.M., Martins P., Pérez-Priego O., Orgaz F. 2012. Influence of water deficits at different times during olive tree inflorescence and flower development. Environmental and Experimental Botany 77: 227–233. DOI: 10.1016/j.envexpbot.2011.11.021.
  49. del Río C., Caballero J.M., García-Fernandez M.D. 2005a. Vigor. In: Rallo L., Barranco D., Caballero J.M., del Río C., Martín A., Tous J., Trujillo I. (Eds.), Variedades de Olivo en España. Mundi-Prensa, Spain, pp. 247–256. [in Spanish]
  50. del Río C., Caballero J.M., García-Fernandez M.D. 2005b. Producción. In: Rallo L., Barranco D., Caballero J.M., del Río C., Martín A., Tous J., Trujillo I. (Eds.), Variedades de Olivo en España. Mundi-Prensa, Spain, pp. 257–274. [in Spanish]
  51. Rojas-Gómez M., Moral J., López-Orozco R., Cabello D., Oteros J., Barranco D. et al. 2023. Pollen production in olive cultivars and its interannual variability. Annals of Botany 132(6): 1145–1158. DOI: 10.1093/aob/mcad163.
  52. Rojo J., Salido P., Pérez-Badia R. 2015. Flower and pollen production in the ‘Cornicabra’ olive (Olea europaea L.) cultivar and the influence of environmental factors. Trees 29(4): 1235–1245. DOI: 10.1007/s00468-015-1203-6.
  53. Sanz-Cortés F., Martínez-Calvo J., Badenes M.L., Bleiholder H., Hack H., Llácer G., Meier U. 2002. Phenological growth stages of olive trees (Olea europaea). Annals of Applied Biology 140(2): 151–157. DOI: 10.1111/j.1744-7348.2002.tb00167.x.
  54. Tholen D., Ethier G., Genty B., Pepin S., Zhu X.-G. 2012. Variable mesophyll conductance revisited: theoretical background and experimental implications. Plant, Cell and Environment 35(12): 2087–2103. DOI: 10.1111/j.1365-3040.2012.02538.x.
  55. Tous J., Romero A., Plana J. 1998. Comportamiento agronómico y comercial de cinco variedades de olivo en Tarragona. Investigación Agraria. Producción y Protección Vegetales 13(1–2): 97–110. [in Spanish]
  56. Tous J., del Río C., Caballero J.M., Rallo L. 2005. Variabilidad y selección. In: Rallo L., Barranco D., Caballero J.M., del Río C., Martín A., Tous J., Trujillo I. (Eds.), Variedades de Olivo en España. Mundi-Prensa, Spain, pp. 233–478. [in Spanish]
  57. van der Vyver C., Peters S. 2017. How do plants deal with dry days? Frontiers for Young Minds 5; 58; 9 p. DOI: 10.3389/frym.2017.00058.
  58. Villalobos F.J., López-Bernal Á., García-Tejera O., Testi L. 2023. Is olive crop modelling ready to assess the impacts of global change? Frontiers in Plant Science 14; 1249793; 14 p. DOI: 10.3389/fpls.2023.1249793.
  59. Vuletin Selak G., Cuevas J., Ban S.G., Pinillos V., Dumicic G., Perica S. 2014. The effect of temperature on the duration of the effective pollination period in ‘Oblica’ olive (Olea europaea) cultivar. Annals of Applied Biology 164(1): 85–94. DOI: 10.1111/aab.12082.
  60. Yu J., Conrad A.O., Decroocq V., Zhebentyayeva T., Williams D.E., Bennett D. et al. 2020. Distinctive gene expression patterns define endodormancy to ecodormancy transition in apricot and peach. Frontiers in Plant Science 11; 180; 24 p. DOI: 10.3389/fpls.2020.00180.
DOI: https://doi.org/10.2478/johr-2025-0010 | Journal eISSN: 2353-3978 | Journal ISSN: 2300-5009
Language: English
Page range: 15 - 28
Submitted on: Aug 1, 2024
Accepted on: May 1, 2025
Published on: Jun 30, 2025
Published by: National Institute of Horticultural Research
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Joedna Campos, Carla Lima, Maria C. Manuelito, José Pragana, Liliana Ferreira, João Fernandes, António M. Cordeiro, Carla F. Inês, published by National Institute of Horticultural Research
This work is licensed under the Creative Commons Attribution 4.0 License.