Have a personal or library account? Click to login
Effect of the Biostimulants of Microbiological Origin on the Entomopathogenic and Plant Parasitic Nematodes from Miscanthus × Giganteus Plantations Cover

Effect of the Biostimulants of Microbiological Origin on the Entomopathogenic and Plant Parasitic Nematodes from Miscanthus × Giganteus Plantations

Open Access
|May 2024

References

  1. Alasmary Z., Todd T., Hettiarachchi G.M., Stefanovska T., Pidlisnyuk V., Roozeboom K. et al. 2020. Effect of soil treatments and amendments on the nematode community under Miscanthus growing in a lead contaminated military site. Agronomy 10(11); 1727; 18 p. DOI: 10.3390/agronomy10111727.
  2. Arndt C., Diao X., Dorosh P., Pauw K., Thurlow J. 2023. The Ukraine war and rising commodity prices: Implications for developing countries. Global Food Security 36; 100680; 9 p. DOI: 10.1016/j.gfs.2023.100680.
  3. Arundale R.A., Dohleman F.G., Heaton E.A., McGrath J.M., Voigt T.B., Long S.P. 2014. Yields of Miscanthus × giganteus and Panicum virgatum decline with stand age in the Midwestern USA. GCB Bioenergy 6(1): 1–13. DOI: 10.1111/gcbb.12077.
  4. Birah A., Chilana P., Shukla U.K., Gupta G.P. 2008. Mass rearing of greater wax moth (Galleria mellonella L.) on artificial diet. Indian Journal of Entomology 70(4): 389–392.
  5. Blyuss K.B., Fatehi F., Tsygankova V.A., Biliavska L.O., Iutynska G.O., Yemets A.I., Blume Y.B. 2019. RNAi-based biocontrol of wheat nematodes using natural poly-component biostimulants. Frontiers in Plant Science 10 483. DOI: 10.3389/fpls.2019.00483.
  6. Caradonia F., Ronga D., Tava A., Francia E. 2022. Plant biostimulants in sustainable potato production: an overview. Potato Research 65(1): 83–104. DOI: 10.1007/s11540-021-09510-3.
  7. Certificate No.21-1652-01-01 2023-01-31. 2021. Production and processing standard for use in organic agriculture (based on the equivalent EU organic production and processing standard for third countries).
  8. Danielewicz D., Dybka-Stępień K., Surma-Ślusarska B. 2018. Processing of Miscanthus × giganteus stalks into various soda and kraft pulps. Part I: Chemical composition, types of cells and pulping effects. Cellulose 25(11): 6731–6744. DOI: 10.1007/s10570-018-2023-9.
  9. El-Sayed M.M., Olfat E.A., Hegab M.A.M., Awad S.E. 2022. Joint actions between entomopathogenic nematodes and abamectin for controlling the termites, Psammotermes hypostoma (Desn.), and Anacanthotermes ochraceus (Burm.). Egyptian Academic Journal of Biological Sciences, F. Toxicology and Pest Control 14(1): 9–22. DOI: 10.21608/eajbsf.2022.212785.
  10. Emery S.M., Reid M.L., Bell-Dereske L., Gross K.L. 2017. Soil mycorrhizal and nematode diversity vary in response to bioenergy crop identity and fertilization. GCB Bioenergy 9(11): 1644–1656. DOI: 10.1111/gcbb.12460.
  11. Falko N., Zhukov O. 2023. Transition from hierarchy to adhocratic organizational culture in a Ukrainian university: From survival to successful development in the conditions of war. Problems and Perspectives in Management 21(2): 15–22. DOI: 10.21511/ppm.21(2-si).2023.03.
  12. Felten D., Emmerling C. 2012. Accumulation of Miscanthus‐derived carbon in soils in relation to soil depth and duration of land use under commercial farming conditions. Journal of Plant Nutrition and Soil Science 175(5): 661–670. DOI: 10.1002/jpln.201100250.
  13. Fetoh B.E.-S.A., Khaled A.S., El-Nagar T.F.K. 2009. Combined effect of entomopathogenic nematodes and biopesticides to control the greasy cut worm, Agrotis ipsilion (Hufn.) in the strawberry fields. Egyptian Academic Journal of Biological Sciences, A. Entomology 2(1): 227–236. DOI: 10.21608/eajbsa.2009.15718.
  14. Fitzgerald J. 2004. Laboratory bioassays and field evaluation of insecticides for the control of Anthonomus rubi, Lygus rugulipennis and Chaetosiphon fragaefolii, and effects on beneficial species, in UK strawberry production. Crop Protection 23(9): 801–809. DOI: 10.1016/j.cropro.2003.12.005.
  15. Fritsche U., Brunori G., Chiaramonti D., Galanakis C., Matthews R., Panoutsou C. 2021. Future transitions for the bioeconomy towards sustainable development and a climate-neutral economy – Foresight scenarios for the EU bioeconomy in 2050. Publications Office of the European Union. DOI: 10.2760 /763277.
  16. Hendriksen N.B. 2022. Microbial biostimulants – the need for clarification in EU regulation. Trends in Microbiology 30(4): 311–313. DOI: 10.1016/j.tim.2022.01.008.
  17. Hunt D.J., Luc M., Manzanilla-López R.H. 2005. Identification, morphology and biology of plant parasitic nematodes. In: Luc M., Sikora R.A., Bridge J. (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture, 2 ed. CABI, pp. 11–52. DOI: 10.1079/9780851997278.0011.
  18. Kary N.E., Sanatipour Z., Mohammadi D., Dillon A.B. 2021. Combination effects of entomopathogenic nematodes, Heterorhabditis bacteriophora and Steinernema feltiae, with abamectin on developmental stages of Phthorimaea operculella (Lepidoptera, Gelechiidae). Crop Protection 143; 105543; 10 p. DOI: 10.1016/j.cropro.2021.105543.
  19. Kaya H.K., Stock S.P. 1997. Techniques in insect nematology. In: Lacey L.A. (Ed.), Manual of techniques in insect pathology. Academic Press, pp. 281–324. DOI: 10.1016/b978-012432555-5/50016-6.
  20. Kharytonov M., Pidlisnyuk V., Stefanovska T., Babenko M., Martynova N., Rula I. 2019. The estimation of Miscanthus × giganteus’ adaptive potential for cultivation on the mining and post-mining lands in Ukraine. Environmental Science and Pollution Research 26: 2974–2986. DOI: 10.1007/s11356-018-3741-0.
  21. Koppenhöfer A.M., Shapiro-Ilan D.I., Hiltpold I. 2020. Entomopathogenic nematodes in sustainable food production. Frontiers in Sustainable Food Systems 4; 125; 14 p. DOI: 10.3389/fsufs.2020.00125.
  22. Kort J. 1960. A technique for the extraction of Heterodera cysts from wet soil and for the estimation of their egg and larval content. Verslagen en Mededeelingen, Plantenziektenkundige Dienst, Wageningen. Netherlands, 233(6): 3–7.
  23. Laznik Ž., Trdan S. 2014. The influence of insecticides on the viability of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under laboratory conditions. Pest Management Science 70(5): 784–789. DOI: 10.1002/ps.3614.
  24. Lewandowski I., Clifton-Brown J.C., Scurlock J.M.O., Huisman W. 2000. Miscanthus: European experience with a novel energy crop. Biomass and Bioenergy 19(4): 209–227. DOI: 10.1016/S0961-9534(00)00032-5.
  25. Lumaret J.-P., Errouissi F., Floate K., Römbke J., Wardhaugh K. 2012. A review on the toxicity and non-target effects of macrocyclic lactones in terrestrial and aquatic environments. Current Pharmaceutical Biotechnology 13(6): 1004–1060. DOI: 10.2174/138920112800399257.
  26. Medkov A.I., Stefanovska T.R., Borodai V.V. 2021. Optimization of the micromycete cultivation process – basics of growth regulators and biotesting their growth-stimulating activity concerning to Miscanthus giganteus. Agrology 4(1): 40–46. DOI: 10.32819/021005.
  27. Meena R.S., Kumar S., Datta R., Lal R., Vijayakumar V., Brtnicky M. et al. 2020. Impact of agrochemicals on soil microbiota and management: A review. Land 9(2); 34; 21 p. DOI: 10.3390/land9020034.
  28. Nebeská D., Pidlisnyuk V., Stefanovska T., Trögl J., Shapoval P., Popelka J. et al. 2019. Impact of plant growth regulators and soil properties on Miscanthus × giganteus biomass parameters and uptake of metals in military soils. Reviews on Environmental Health 34(3): 283–291. DOI: 10.1515/reveh-2018-0088.
  29. Nurzhanova A.A., Pidlisnyuk V., Berzhanova R., Nurmagambetova A.S., Terletskaya N., Omirbekova N. et al. 2023. PGPR-driven phytoremediation and physio-biochemical response of Miscanthus × giganteus to stress induced by the trace elements. Environmental Science and Pollution Research 30(42): 96098–96113. DOI: 10.1007/s11356-023-29031-5.
  30. Pereira P., Bašić F., Bogunovic I., Barcelo D. 2022. Russian-Ukrainian war impacts the total environment. Science of the Total Environment 837; 155865. DOI: 10.1016/j.scitotenv.2022.155865.
  31. Pidlisnyuk V., Shapoval P., Zgorelec Ž., Stefanovska T., Zhukov O. 2020. Multiyear phytoremediation and dynamic of foliar metal(loid)s concentration during application of Miscanthus × giganteus Greef et Deu to polluted soil from Bakar, Croatia. Environmental Science and Pollution Research 27(25): 31446–31457. DOI: 10.1007/s11356-020-09344-5.
  32. Pidlisnyuk V., Stefanovska T., Zhukov O., Medkow A., Shapoval P., Stadnik V., Sozanskyi M. 2022. Impact of plant growth regulators to development of the second generation energy crop Miscanthus × giganteus produced two years in marginal post-military soil. Applied Sciences 12(2); 881; 14 p. DOI: 10.3390/app12020881.
  33. R Core Team 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org
  34. Seesao Y., Gay M., Merlin S., Viscogliosi E., Aliouat-Denis C.M., Audebert C. 2017. A review of methods for nematode identification. Journal of Micro-biological Methods 138: 37–49. DOI: 10.1016/j.mimet.2016.05.030.
  35. Seinhorst J.W. 1966. Killing nematodes for taxonomic study with hot f.a. 4:1. Nematologica 12(1): 178–178a. DOI: 10.1163/187529266x00239.
  36. Stefanovska T., Luckhart S., Ripa L., Stevens G., Lewis E. 2023. Steinernema carpocapsae. Trends in Parasitology 39(5): 400–401. DOI: 10.1016/j.pt.2023.01.002.
  37. Stefanovska T., Skwiercz A., Pidlisnyuk V., Zhukov O., Kozacki D., Mamirova A. et al. 2022. The short-term effects of amendments on nematode communities and diversity patterns under the cultivation of Miscanthus × giganteus on marginal land. Agronomy 12(9); 2063; 18 p. DOI: 10.3390/agronomy12092063.
  38. Stefanovska T., Skwiercz A., Zouhar M., Pidlisnyuk V., Zhukov O. 2021. Plant-feeding nematodes associated with Miscanthus × giganteus and their use as potential indicators of the plantations’ state. International Journal of Environmental Science and Technology 18(1): 57–72. DOI: 10.1007/s13762-020-02865-z.
  39. Subbotin S.A., Yan G., Kantor M., Handoo Z. 2020. On the molecular identity of Paratylenchus nanus Cobb, 1923 (Nematoda: Tylenchida). Journal of Nematology 52(1); 127; 7 p. DOI: 10.21307/jofnem-2020-127.
  40. Technical conditions of Ukraine. 2014. 20.2-31168762-006:2012 Plant Grow Regulator “Regoplant” CSM (5). Manufacturer’s specification.
  41. Technical conditions of Ukraine. 2016. 24.2-03563790-041-2001 Plant Grow Regulator “Charkor” CSM (5). Manufacturer’s specification.
  42. Technical conditions of Ukraine. 2020. 20.2-31168762-005:2012 Plant Grow Regulator “Stimpo” CSM (5). Manufacturer’s specification.
  43. Tsygankova V.A., Andrusevich Y.V., Babayants O.V., Ponomarenko S.P., Medkov A.I., Galkin A.P. 2013. Increase of plant immune protection against pathogenic fungi, wreckers and nematodes by growth regulators. Physiology and Biochemistry of Cultivated Plants 45(2): 138–147. [in Ukrainian with English abstract]
  44. Tsygankova V.A., Stefanovska T.R., Galkin A.P., Ponomarenko S.P., Blume Y.B. 2012. Inducing effect of PGRs on small regulatory si/miRNA in resistance to sugar beet cyst nematode. Communications in Agricultural and Applied Biological Sciences 77(4): 779–787.
  45. Wang X.-J., Wang M., Wang J.-D., Jiang L., Wang J.-J., Xiang W.-S. 2010. Isolation and identification of novel macrocyclic lactones from Streptomyces aver-mitilis NEAU1069 with acaricidal and nematocidal activity. Journal of Agricultural and Food Chemistry 58(5): 2710–2714. DOI: 10.1021/jf902496d.
  46. White G.F. 1927. A method for obtaining infective nematode larvae from cultures. Science 66(1709): 302–303. DOI: 10.1126/science.66.1709.302.b.
  47. Yan A., Wang Y., Tan S.N., Mohd Yusof M.L., Ghosh S., Chen Z. 2020. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science 11; 359; 15 p. DOI: 10.3389/fpls.2020.00359
DOI: https://doi.org/10.2478/johr-2024-0003 | Journal eISSN: 2353-3978 | Journal ISSN: 2300-5009
Language: English
Page range: 13 - 24
Submitted on: Dec 1, 2023
|
Accepted on: Mar 1, 2024
|
Published on: May 8, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Tatyana Stefanovska, Andrzej Skwiercz, Valentina Pidlisnyuk, Vira Boroday, Artem Medkow, Olexander Zhukov, published by National Institute of Horticultural Research
This work is licensed under the Creative Commons Attribution 4.0 License.