References
- Adaskaveg J.A., Silva C.J., Huang P., Blanco-Ulate B. 2021. Single and double mutations in tomato ripening transcription factors have distinct effects on fruit development and quality traits. Frontiers in Plant Science 12; 647035; 17 p. DOI: 10.3389/fpls.2021.647035.
- Aramrak A., Lawrence N.C., Demacon V.L., Carter A.H., Kidwell K.K., Burke I.C., Steber C. M. 2018. Isolation of mutations conferring increased glyphosate resistance in spring wheat. Crop Science 58(1): 84–97. DOI: 10.2135/cropsci2016.10.0861.
- Argast G.M., Stephens K.M., Emond M.J., Monnat R.J. Jr. 1998. I-PpoI and I-CreI homing site sequence degeneracy determined by random mutagenesis and sequential in vitro enrichment. Journal of Molecular Biology 280(3): 345–353. DOI: 10.1006/jmbi.1998.1886.
- Barrangou R. 2015. The roles of CRISPR–Cas systems in adaptive immunity and beyond. Current Opinion in Immunology 32: 36–41. DOI: 10.1016/j.coi.2014.12.008.
- Barreiro-Hurle J., Bogonos M., Himics M., Hristov J., Pérez-Domínguez I., Sahoo A. et al. 2021. Modelling environmental and climate ambition in the agricultural sector with the CAPRI model. JCR Technical Report. EUR 30317 EN, Publications Office of the European Union, Luxembourg. DOI: 10.2760/98160.
- Beckman J., Ivanic M., Jelliffe J.L., Baquedano F.G., Scott S.G. 2020. Economic and food security impacts of agricultural input reduction under the European Union Green Deal's Farm to Fork and Bio-diversity Strategies. EB-30, U.S. Department of Agriculture, Economic Research Service, 52 p. https://www.ers.usda.gov/webdocs/publications/99741/eb-30.pdf?v=4469.8
- Beyaz R., Yildiz M. 2017. The use of gamma irradiation in plant mutation breeding. In: Jurić S. (Ed.), Plant Engineering. InTech, Croatia, pp. 33–46. DOI: 10.5772/intechopen.69974.
- Boch J. 2011. TALEs of genome targeting. Nature Biotechnology 29(2): 135–136. DOI: 10.1038/nbt.1767.
- Bremmer J., Gonzalez-Martinez A., Jongeneel R., Huiting H., Stokkers R., Ruijs M. 2021. Impact assessment of EC 2030 Green Deal targets for sustainable crop production. The Netherlands, Wageningen Economic Research, Report 2021–150, 70 p. DOI: 10.18174/558517.
- Chagné D. 2015. Whole genome sequencing of fruit tree species. Advances in Botanical Research 74: 1–37. DOI: 10.1016/bs.abr.2015.04.004.
- Chen J-T., Coate J.E., Meru G. 2020. Editorial: Artificial polyploidy in plants. Frontiers in Plant Science 11; 621849; 3 p. DOI: 10.3389/fpls.2020.621849.
- CJEU 2018. EU:C:2018:583, Case C-528/16. Judgement of 25 July 2018. Court of Justice of the European Union. https://curia.europa.eu/juris/document/document.jsf?mode=DOC&pageIndex=0&docid=204387
- Curtin S.J., Zhang F, Sander J.D., Haun W.J., Starker C., Baltes N.J. et al. 2011. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiology 156(2): 466–473. DOI: 10.1104/pp.111.172981.
- Darwin C. 1868. The variation of animals and plants under domestication. John Murray, London, UK. DOI: 10.1017/cbo9780511709500.
- Drake J.W., Charlesworth B., Charlesworth D., Crow J.F. 1998. Rates of spontaneous mutation. Genetics 148(4): 1667–1686. DOI: 10.1093/genetics/148.4.1667.
- EC 2020a. A Farm to Fork Strategy for a fair, healthy and environmentally-friendly food system. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. COM(2020) 381 final, 19 p. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0381
- EC 2020b. EU Biodiversity Strategy for 2030. Bringing nature back into our lives. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. COM(2020) 380 final, 22 p. https://ec.europa.eu/environment/nature/bio-diversity/strategy/index_en.htm
- EC 2021. Study on the status of new genomic techniques under Union law and in light of the Court of Justice ruling in Case C-528/16. Commission Staff Working Document. European Commission. SWD(2021) 92 final, 116 p. https://food.ec.europa.eu/system/files/2021-04/gmo_mod-bio_ngt_eu-study.pdf
- EFSA 2020. Applicability of the EFSA Opinion on site-directed nucleases type 3 for the safety assessment of plants developed using site-directed nucleases type 1 and 2 and oligonucleotide-directed mutagenesis. EFSA Panel on Genetically Modified Organisms. EFSA Journal 18(11); e06299; 14 p. DOI: 10.2903/j.efsa.2020.6299.
- Fluhr R., Aviv D., Galun E., Edelman M. 1985. Efficient induction and selection of chloroplast-encoded antibiotic-resistant mutants in Nicotiana. Proceedings of the National Academy of Sciences 82(5): 1485–1489. DOI: 10.1073/pnas.82.5.1485.
- Gaudelli N.M., Komor A.C., Rees H.A., Packer M.S., Badran A.H., Bryson D.I., Liu D.R. 2017. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551(7681): 464–471. DOI: 10.1038/nature24644.
- Granhall I. 1954. Spontaneous and induced bud mutations in fruit trees. Acta Agriculturae Scandinavica 4(1): 594–600. DOI: 10.1080/00015125409439967.
- Hanna R.E., Doench J.G. 2020. Design and analysis of CRISPR–Cas experiments. Nature Biotechnology 38(7): 813–823. DOI: 10.1038/s41587-020-0490-7.
- Henning C., Witzke P., Panknin L., Grunenberg M. 2021. Ökonomische und Ökologische Auswirkungen des Green Deals in der Agrarwirtschaf. Department of Agricultural Economics, Agricultural Policy, Kiel University, Germany, 238 p. [in German] https://www.bio-pop.agrarpol.uni-kiel.de/de/f2f-studie/vollversion-der-studie-deutsch
- Hutchison C.A., Phillips S., Edgell M.H., Gillam S., Jahnke P., Smith M. 1978. Mutagenesis at a specific position in a DNA sequence. Journal of Biological Chemistry 253(18): 6551–6560. DOI: 10.1016/s0021-9258(19)46967-6.
- Illa E., Eduardo I., Audergon J.M., Barale F., Dirlewanger E., Li X. et al. 2011. Saturating the Prunus (stone fruits) genome with candidate genes for fruit quality. Molecular Breeding 28(4): 667–682. DOI: 10.1007/s11032-010-9518-x.
- Jaganathan D., Ramasamy K., Sellamuthu G., Jayabalan S., Venkataraman G. 2018. CRISPR for crop improvement: An update review. Frontiers in Plant Science 9; 985; 17 p. DOI: 10.3389/fpls.2018.00985.
- Janick J. 2011. History of fruit breeding. Fruit, Vegetable and Cereal Science and Biotechnology 5(Special Issue 1): 1–7.
- Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. 2012. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096): 816–821. DOI: 10.1126/science.1225829.
- Karavolias N.G., Horner W., Abugu M.N., Evanega S.N. 2021. Application of gene editing for climate change in agriculture. Frontiers in Sustainable Food Systems 5; 685801; 23 p. DOI: 10.3389/fsufs.2021.685801.
- Kharkwal M.C. 2012. A brief history of plant mutagenesis. In: Shu Q.Y., Forster B.P., Nakagawa H. (Eds.), Plant mutation breeding and biotechnology. CABI, pp. 21–30. DOI: 10.1079/9781780640853.0021.
- Kim Y.-G., Cha J., Chandrasegaran S. 1996. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences 93(3): 1156–1160. DOI: 10.1073/pnas.93.3.1156.
- Kleinstiver B.P., Prew M.S., Tsai S.Q., Nguyen N.T., Topkar V.V., Zheng Z., Joung J.K. 2015. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nature Biotechnology 33(12): 1293–1298. DOI: 10.1038/nbt.3404.
- Komor A.C., Kim Y.B., Packer M.S., Zuris J.A., Liu D.R. 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603): 420–424. DOI: 10.1038/nature17946.
- Leitao J. 2012. Chemical mutagenesis. In: Shu Q.Y., Forster B.P., Nakagawa H. (Eds.), Plant mutation breeding and biotechnology. CABI, pp. 135–158. DOI: 10.1079/9781780640853.0135.
- Liu Q., Yang F., Zhang J., Liu H., Rahman S., Islam S. et al. 2021. Application of CRISPR/Cas9 in crop quality improvement. International Journal of Molecular Sciences 22(8); 4206; 16 p. DOI: 10.3390/ijms22084206.
- Modrzejewski D., Hartung F., Sprink T., Krause D., Kohl C., Wilhelm R. 2019. What is the available evidence for the range of applications of genome-editing as a new tool for plant trait modification and the potential occurrence of associated off-target effects: a systematic map. Environmental Evidence 8; 27; 33 p. DOI: 10.1186/s13750-019-0171-5.
- Nakamura M., Nunoshiba T., Hiratsu K. 2021. Detection and analysis of UV-induced mutations in the chromosomal DNA of Arabidopsis. Biochemical and Biophysical Research Communications 554: 89–93. DOI: 10.1016/j.bbrc.2021.03.087.
- Oladosu Y., Rafii M.Y., Abdullah N., Hussin G., Ramli A., Rahim H.A. et al. 2016. Principle and application of plant mutagenesis in crop improvement: a review. Biotechnology and Biotechnological Equipment 30(1): 1–16. DOI: 10.1080/13102818.2015.1087333.
- Oldach K.H. 2011. Mutagenesis. In: Pratap A., Kumar J. (Eds.), Biology and breeding of food legumes. CABI, pp. 208–219. DOI: 10.1079/9781845937669.0208.
- Osakabe Y., Osakabe K. 2015. Genome editing with engineered nucleases in plants. Plant and Cell Physiology 56(3): 389–400. DOI: 10.1093/pcp/pcu170.
- Owais W.M., Kleinhofs A. 1988. Metabolic activation of the mutagen azide in biological systems. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 197(2): 313–323. DOI: 10.1016/0027-5107(88)90101-7.
- Pathirana R. 2011. Plant mutation breeding in agriculture. Plant Sciences Reviews 2011. CAB Reviews 6(32): 107–126. DOI: 10.1079/pavsnnr20116032.
- Puchta H., Dujon B., Hohn B. 1993. Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Research 21(22): 5034–5040. DOI: 10.1093/nar/21.22.5034.
- Ramirez-Torres F., Ghogare R., Stowe E., Cerdá-Bennasser P., Lobato-Gómez M., Williamson-Benavides B.A. et al. 2021. Genome editing in fruit, ornamental, and industrial crops. Transgenic Research 30(4): 499–528. DOI: 10.1007/s11248-021-00240-3.
- Ryczek N., Hryhorowicz M., Zeyland J., Lipiński D., Słomski R. 2021. CRISPR/Cas technology in pig-to-human xenotransplantation research. International Journal of Molecular Sciences 22(6); 3196; 22 p. DOI: 10.3390/ijms22063196.
- Sanada T., Amano E. 1998. Induced mutation in fruit trees. In: Jain S.M., Brar D.S., Ahloowalia B.S. (Eds.), Somaclonal variation and induced mutations in crop improvement. Current Plant Science and Biotechnology in Agriculture 32: 401–419. DOI: 10.1007/978-94-015-9125-6_20.
- Sattar M.N., Iqbal Z., Al-Khayri J.M., Jain S.M. 2021. Induced genetic variations in fruit trees using new breeding tools: Food security and climate resilience. Plants 10(7); 1347; 36 p. DOI: 10.3390/plants10071347.
- Sattler M.C., Carvalho C.R., Clarindo W.R. 2016. The polyploidy and its key role in plant breeding. Planta 243(2): 281–296. DOI: 10.1007/s00425-015-2450-x.
- Scott A. 2018. How CRISPR is transforming drug discovery. Nature 555(7695): S10–S11. DOI: 10.1038/d41586-018-02477-1.
- Sikora P., Chawade A., Larsson M., Olsson J., Olsson O. 2011. Mutagenesis as a tool in plant genetics, functional genomics, and breeding. International Journal of Plant Genomics 2011; 314829; 13 p. DOI: 10.1155/2011/314829.
- Smith J., Grizot S., Arnould S., Duclert A., Epinat J.-C., Chames P. et al. 2006. A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Research 34(22); e149; 12 p. DOI: 10.1093/nar/gkl720.
- Stadler L.J. 1928. Genetic effects of X-rays in maize. Proceedings of the National Academy of Sciences 14(1): 69–75. DOI: 10.1073/pnas.14.1.69.
- Sussman D., Chadsey M., Fauce S., Engel A., Bruett A., Monnat R. Jr. et al. 2004. Isolation and characterization of new homing endonuclease specificities at individual target site positions. Journal of Molecular Biology 342(1): 31–41. DOI: 10.1016/j.jmb.2004.07.031.
- Stemple D.L. 2004. TILLING – a high-throughput harvest for functional genomics. Nature Reviews Genetics 5(2): 145–150. DOI: 10.1038/nrg1273.
- Troggio M., Gleave A., Salvi S., Chagné D., Cestaro A., Kumar S. et al. 2012. Apple, from genome to breeding. Tree Genetics and Genomes 8(3): 509–529. DOI: 10.1007/s11295-012-0492-9.
- Vivian A., Arnold D.L. 2000. Bacterial effector genes and their role in host-pathogen interactions. Journal of Plant Pathology 82(3): 163–178.
- de Vries H. 1906. Species and varieties. Their origin by mutation. Open Court Publishing Company, London, UK. DOI: 10.5962/bhl.title.4640.
- Watanabe H. 2001. Significance and expectations of ion beam breeding. Gamma Field Symposia 40: 15–19.
- Wolters P.J., Schouten H.J., Velasco R., Si-Ammour A., Baldi P. 2013. Evidence for regulation of columnar habit in apple by a putative 2OG-Fe(II) oxygenase. New Phytologist 200(4): 993–939. DOI: 10.1111/nph.12580.
- Yoshioka T., Masuda T., Kotobuki K., Sanada T., Ito Y. 1999. Gamma-ray-induced mutation breeding in fruit trees: Breeding of mutant cultivars resistant to black spot disease in Japanese pear. Japan Agricultural Research Quarterly 33(4): 227–234.
- Zhang B. 2021. CRISPR/Cas gene therapy. Journal of Cellular Physiology 236(4): 2459–2481. DOI: 10.1002/jcp.30064.
- Zhang F., Maeder M.L., Unger-Wallace E., Hoshaw J.P., Reyon D., Christian M. et al. 2010. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proceedings of the National Academy of Sciences 107(26): 12028–12033. DOI: 10.1073/pnas.0914991107.
- Zhang M.Y., Xue C., Hu H., Li J., Xue Y., Wang R. et al. 2021. Genome-wide association studies provide insights into the genetic determination of fruit traits of pear. Nature Communications 12; 1144; 10 p. DOI: 10.1038/s41467-021-21378-y.
- Zhao Z., Li C., Tong F., Deng J., Huang G., Sang Y. 2021. Review of applications of CRISPR-Cas9 gene-editing technology in cancer research. Biological Procedures Online 23; 14; 13 p. DOI: 10.1186/s12575-021-00151-x.
- Zhu B., Wang D., Wei N. 2022. Enzyme discovery and engineering for sustainable plastic recycling. Trends in Biotechnology 40(1): 22–37. DOI: 10.1016/j.tibtech.2021.02.008.
- Zimmermann F.K. 1977. Genetic effects of nitrous acids. Mutation Research/Reviews in Genetic Toxicology 39(2): 127–148. DOI: 10.1016/0165-1110(77)90019-7.