Have a personal or library account? Click to login
The Influence of Biostimulants on Tomato Plants Cultivated under Hydroponic Systems Cover

The Influence of Biostimulants on Tomato Plants Cultivated under Hydroponic Systems

Open Access
|Oct 2021

References

  1. Abdelkader M.M., Puchkov M.Yu. 2019. Effect of growth regulators on productivity and quality of tomato crop under Volga delta conditions. Vegetable Crops of Russia 6: 36–40. DOI: 10.18619/2072-9146-2019-6-36-40.
  2. Abdelkader M.M.M., Suliman A., Puchkov M., Loktionova E. 2019a. Applying a digital method for measuring leaf area index of tomato plants. Advances in Intelligent Systems Research 167: 5–8. DOI: 10.2991/ispc-19.2019.2.
  3. Abdelkader M.M., Puchkov M.Y., Lysakov M.A., Loktionova E.G., Suliman A.A. 2019b. Effect of crezacin and humic acid on growth and physiological aspects of tomato plants (Lycopersicon esculentum). Journal of Applied Horticulture 21(1): 61–66. DOI: 10.2991/ispc-19.2019.2.
  4. Bulgari R., Franzoni G., Ferrante A. 2019. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9(6); 306; 30 p. DOI: 10.3390/agronomy9060306.
  5. Carvalho M.E.A., de Camargo e Castro P.R. 2019. Seaweeds as plant biostimulants. In: Pereira L., Bahcevandziev K., Joshi N.H. (Eds.), Seaweeds as Plant Fertilizer, Agricultural Biostimulants and Animal Fodder. CRC Press, pp. 80–99. DOI: 10.1201/9780429487156-5.
  6. Chen Y., Aviad T. 2015. Effects of humic substances on plant growth. In: MacCarthy P., Clapp C.E., Malcolm R.L., Bloom P.R. (Eds.), Humic Substances in Soil and Crop Sciences: Selected Readings. ASA, pp. 161–186. DOI: 10.2136/1990.humicsubstances.c7.
  7. Colla G., Cardarelli M., Bonini P., Rouphael Y. 2017. Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience 52(9): 1214–1220. DOI: 10.21273/hortsci12200-17.
  8. Considine G.D. (Ed.) 2005. Van Nostrand’s Encyclopedia of Chemistry, 5th ed. Association of Official Analytical Chemists. John Wiley & Sons, 1856 p. DOI: 10.1002/0471740039.vec0284.
  9. Corell M., Martín-Palomo M.J., Sánchez-Bravo P., Carrillo T., Collado J., Hernández-García F. et al. 2019. Evaluation of growers’ efforts to improve the sustainability of olive orchards: Development of the hydroSOStainable index. Scientia Horticulturae 257; 108661; 9 p. DOI: 10.1016/j.scienta.2019.108661.
  10. Craigie J.S. 2011. Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology 23(3): 371–393. DOI: 10.1007/s10811-010-9560-4.
  11. EFSA 2008. Nitrate in vegetables. Scientific Opinion of the Panel on Contaminants in the Food chain. European Food Safety Authority. EFSA Journal 6(6); 689; 79 p. DOI: 10.2903/j.efsa.2008.689.
  12. Fereres E., Villalobos F.J. 2016. Agriculture and agricultural systems. In: Villalobos F.J., Fereres E. (Eds.), Principles of Agronomy for Sustainable Agriculture. Springer, Switzerland, pp. 1–12. DOI: 10.1007/978-3-319-46116-8_1.
  13. Francesca S., Arena C., Mele B.H., Schettini C., Ambrosino P., Barone A., Rigano M.M. 2020. The use of a plant-based biostimulant improves plant performances and fruit quality in tomato plants grown at elevated temperatures. Agronomy 10(3); 363; 14 p. DOI: 10.3390/agronomy10030363.
  14. du Jardin P. 2015. Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae 196: 3–14. DOI: 10.1016/j.scienta.2015.09.021.
  15. Metcalf C.J.E., Rees M., Alexander J.M., Rose K. 2006. Growth–survival trade-offs and allometries in rosette-forming perennials. Functional Ecology 20(2): 217–225. DOI: 10.1111/j.1365-2435.2006.01084.x.
  16. Mohammed M., Wilson L.A., Gomes P.I. 1999. Postharvest sensory and physiochemical attributes of processing and nonprocessing tomato cultivars. Journal of Food Quality 22(2): 167–182. DOI: 10.1111/j.1745-4557.1999.tb00549.x.
  17. Nardi S., Pizzeghello D., Muscolo A., Vianello A. 2002. Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry 34(11): 1527–1536. DOI: 10.1016/s0038-0717(02)00174-8.
  18. Navez B, Letard M, Grasselly D., Jost M. 1999. Les critères de qualité de la tomate. Infos CTIFL 155: 41–47.
  19. Norrie J., Keathley J.P. 2006 Benefits of Ascophyllum nodosum marine-plant extract applications to ‘Thompson Seedless’ grape production. Acta Horticulturae 727: 243–247. DOI: 10.17660/actahortic.2006.727.27.
  20. Okolie C.L., Mason B., Critchley A.T. 2018. Seaweeds as a source of proteins for use in pharmaceuticals and high-value applications. In: Hayes M. (Ed.), Novel Proteins for Food, Pharmaceuticals, and Agriculture. John Wiley & Sons, pp. 217–238. DOI: 10.1002/9781119385332.ch11.
  21. Van Oosten M.J., Pepe O., De Pascale S., Silletti S., Maggio A. 2017. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture 4; 5; 12 p. DOI: 10.1186/s40538-017-0089-5.
  22. Parađiković N., Teklić T., Zeljković S., Lisjak M., Špoljarević M. 2019. Biostimulants research in some horticultural plant species – A review. Food and Energy Security 8(2); e00162, 17 p. DOI: 10.1002/fes3.162.
  23. Pereira A.R., Machado E.C. 1987. Análise quantitativa do crescimento de comunidades vegetais. Instituto Agronômico de Campinas, Brasil. Boletim Técnico 114; 33 p.
  24. Philipson C.D., Saner P., Marthews T.R., Nilus R., Reynolds G., Turnbull L.A., Hector A. 2012. Light-based regeneration niches: Evidence from 21 dipterocarp species using size - specific RGRs. Biotropica 44(5): 627–636. DOI: 10.1111/j.1744-7429.2011.00833.x.
  25. Rayorath P., Jithesh M.N., Farid A., Khan W., Palanisamy R., Hankins S.D. et al. 2008. Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. using a model plant, Arabidopsis thaliana (L.) Heynh. Journal of Applied Phycology 20: 423–429. DOI: 10.1007/s10811-007-9280-6.
  26. Rees M., Osborne C.P., Woodward F.I., Hulme S.P., Turnbull L.A., Taylor S.H. 2010. Partitioning the components of relative growth rate: How important is plant size variation? American Naturalist 176(6): E152–E161. DOI: 10.1086/657037.
  27. Robertson G.P., Harwood R.R. 2013. Agriculture, Sustainable. In: Levin S.A. (Ed.), Encyclopedia of Biodiversity, 2nd ed. Academic Press, pp. 111–118. DOI: 10.1016/b978-0-12-384719-5.00287-2.
  28. Shukla P.S., Borza T., Critchley A.T., Prithiviraj B. 2016. Carrageenans from red seaweeds as promoters of growth and elicitors of defense response in plants. Frontiers in Marine Science 3; article 81; 9 p. DOI: 10.3389/fmars.2016.00081.
  29. Shukla P.S., Borza T., Critchley A.T., Hiltz D., Norrie J., Prithiviraj B. 2018. Ascophyllum nodosum extract mitigates salinity stress in Arabidopsis thaliana by modulating the expression of miRNA involved in stress tolerance and nutrient acquisition. PLoS ONE 13(10); e0206221; 25 p. DOI: 10.1371/journal.pone.0206221.
  30. Shukla P.S., Mantin E.G., Adil M., Bajpai S., Critchley A.T., Prithiviraj B. 2019. Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Frontiers in Plant Science 10; article 655; 22 p. DOI: 10.3389/fpls.2019.00655.
  31. Tkalec M., Vinković T., Baličević R., Parađiković N. 2010. Influence of biostimulants on growth and development of bell pepper (Capsicum annuum L.). Acta Agriculturae Serbica 15(29): 83–88.
  32. Turnbull L.A., Paul-Victor C., Schmid B., Purves D.W. 2008. Growth rates, seed size, and physiology: Do small-seeded species really grow faster? Ecology 89(5): 1352–1363. DOI: 10.1890/07-1531.1.
  33. Usuda H. 2004. Evaluation of the effect of photosynthesis on biomass production with simultaneous analysis of growth and continuous monitoring of CO2 exchange in the whole plants of radish, cv Kosena under ambient and elevated CO2. Plant Production Science 7(4): 386–396. DOI: 10.1626/pps.7.386.
  34. Valdrighi M.M., Pera A., Agnolucci M., Frassinetti S., Lunardi D., Vallini G. 1996. Effects of compost-derived humic acids on vegetable biomass production and microbial growth within a plant (Cichorium intybus)-soil system: a comparative study. Agriculture, Ecosystems and Environment 58(2–3): 133–144. DOI: 10.1016/0167-8809(96)01031-6.
  35. Wally O.S.D., Critchley A.T., Hiltz D., Craigie J.S., Han X., Zaharia L.I. et al. 2013a. Regulation of phytohormone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. Journal of Plant Growth Regulation 32(2): 324–339. DOI: 10.1007/s00344-012-9301-9.
  36. Wally O.S.D., Critchley A.T., Hiltz D., Craigie J.S., Han X., Zaharia L.I. et al. 2013b. Erratum to: Regulation of phytohormone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. Journal of Plant Growth Regulation 32(2): 340–341. DOI: 10.1007/s00344-012-9311-7.
  37. Yakhin O.I., Lubyanov A.A., Yakhin I.A., Brown P.H. 2017. Biostimulants in plant science: A global perspective. Frontiers in Plant Science 7; article 2049; 32 p. DOI: 10.3389/fpls.2016.02049.
  38. Zeljković S.B., Parađiković N.A., Babić T.S., Đurić G.D., Oljača R.M., Vinković T.M., Tkalec M.B. 2010. Influence of biostimulant and substrate volume on root growth and development of scarlet sage (Salvia splendens L.) transplants. Journal of Agricultural Sciences 55(1): 29–36. DOI: 10.2298/jas1001029z.
  39. Zhang X., Ervin E.H., Schmidt R.E. 2003. Plant growth regulators can enhance the recovery of Kentucky bluegrass sod from heat injury. Crop Science 43: 952–956. DOI: 10.2135/cropsci2003.0952.
  40. Zushi K., Suehara C., Shirai M. 2020. Effect of light intensity and wavelengths on ascorbic acid content and the antioxidant system in tomato fruit grown in vitro. Scientia Horticulturae 274; 109673; 7 p. DOI: 10.1016/j.scienta.2020.109673.
DOI: https://doi.org/10.2478/johr-2021-0012 | Journal eISSN: 2353-3978 | Journal ISSN: 2300-5009
Language: English
Page range: 107 - 116
Submitted on: Dec 1, 2020
Accepted on: Jul 1, 2021
Published on: Oct 28, 2021
Published by: National Institute of Horticultural Research
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Mostafa M. Abdelkader, Magomed S. Gaplaev, Aslambek A. Terekbaev, Mikhail Y. Puchkov, published by National Institute of Horticultural Research
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.