Have a personal or library account? Click to login
Influence of an Arbuscular Mycorrhizal Fungus and Phosphate-Solubilizing Bacterium Inoculation at Stem Cutting Stage on P Uptake and Growth of Impatiens walleriana Plants in an Unsterile Field Soil Cover

Influence of an Arbuscular Mycorrhizal Fungus and Phosphate-Solubilizing Bacterium Inoculation at Stem Cutting Stage on P Uptake and Growth of Impatiens walleriana Plants in an Unsterile Field Soil

Open Access
|Dec 2019

References

  1. Abdel-Rahman S.S.A., El-Naggar A.-R.I. 2014. Promotion of rooting and growth of some types of Bougainvilleas cutting by plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) in combination with indole-3-butyric acid (IBA). International Journal of Science and Research 3(11): 97–108.
  2. Bago B., Pfeffer P.E., Zipfel W., Lammers P., Shachar-Hill Y. 2002. Tracking metabolism and imaging transport in arbuscular mycorrhizal fungi. Plant and Soil 244(1–2): 189–197. DOI: 10.1023/a:1020212328955.10.1023/A:1020212328955
  3. Beneduzi A., Moreira F., da Costa P.B., Vargas L.K., Lisboa B.B., Favreto R., Baldani J.I., Passaglia L.M.P. 2013. Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the South of Brazil. Applied Soil Ecology 63: 94–104. DOI: 10.1016/j.apsoil.2012.08.010.10.1016/j.apsoil.2012.08.010
  4. Copes W.E., Blythe E.K. 2011. Rooting response of azalea cultivars to hot water treatment used for pathogen control. HortScience 46(1): 52–56. DOI: 10.21273/hortsci.46.1.52.10.21273/HORTSCI.46.1.52
  5. Erturk Y., Ercisli S., Haznedar A., Cakmakci R. 2010. Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings. Biological Research 43(1): 91–98. DOI: 10.4067/s0716-97602010000100011.10.4067/S0716-97602010000100011
  6. Gardner J.A.G., Lubell J.D., Brand M.H. 2019. Propagation of Comptonia peregrina L. from stem cuttings. HortScience 54(3): 511–513. DOI: 10.21273/hortsci13770-18.10.21273/HORTSCI13770-18
  7. Gray J.T., Schlesinger W.H. 1983. Nutrient use by evergreen and deciduous shrubs in southern California: II. Experimental investigations of the relationship between growth, nitrogen uptake and nitrogen availability. Journal of Ecology 71(1): 43–56. DOI: 10.2307/2259962.10.2307/2259962
  8. Jackson M.L. 1967. Soil Chemical Analysis. Prentice Hall India, New Delhi, 498 p.
  9. Kapczyńska A. 2019. Propagation of Lachenalia cultivars from leaf cuttings. Acta Scientiarum Polonorum Hortorum Cultus 18(1): 189–195. DOI: 10.24326/asphc.2019.1.19.10.24326/asphc.2019.1.19
  10. Karagiannidis N., Thomidis T., Lazari D., Panou-Filotheou E., Karagiannidou C. 2011. Effect of three Greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of oregano and mint plants. Scientia Horticulturae 129(2): 329–334. DOI: 10.1016/j.scienta.2011.03.043.10.1016/j.scienta.2011.03.043
  11. Kobae Y., Gutjahr C., Paszkowski U., Kojima T., Fujiwara T., Hata S. 2014. Lipid droplets of arbuscular mycorrhizal fungi emerge in concert with arbuscule collapse. Plant and Cell Physiology 55(11): 1945–1953. DOI: 10.1093/pcp/pcu123.10.1093/pcp/pcu12325231957
  12. Koide R.T., Landherr L.L., Besmer Y.L., Detweiler J.M., Holcomb E.J. 1999. Strategies for mycorrhizal inoculation of six annual bedding plant species. HortScience 34(7): 1217–1220. DOI: 10.21273/hortsci.34.7.1217.10.21273/HORTSCI.34.7.1217
  13. Kokwaro J.O. 2009. Medicinal plants of East Africa, 3rd ed. University of Nairobi Press, Nairobi, 478 p.
  14. Koshila Ravi R., Muthukumar T. 2019. Perspectives on the role of arbuscular mycorrhizal fungi in the in vivo vegetative plant propagation. In: Giri B., Prasad R., Wu Q-S., Varma A. (Eds.), Biofertilizers for sustainable agriculture and environment. Soil Biology 55: 83–107. DOI: 10.1007/978-3-030-18933-4_5.10.1007/978-3-030-18933-4_5
  15. Koske R.E., Gemma J.N. 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research 92(4): 486–488. DOI: 10.1016/s0953-7562(89)80195-9.10.1016/S0953-7562(89)80195-9
  16. Kudoyarova G., Vysotskaya L.B., Arkhipova T.N., Kuzmina L.Y., Galimsyanova N.F., Sidorova L.V., et al. 2017. Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants. Acta Physiologiae Plantarum 39(11): 253. DOI: 10.1007/s11738-017-2556-9.10.1007/s11738-017-2556-9
  17. Lecomte J., St-Arnaud M., Hijri M. 2011. Isolation and identification of soil bacteria growing at the expense of arbuscular mycorrhizal fungi. FEMS Microbiology Letters 317(1): 43–51. DOI: 10.1111/j.1574-6968.2011.02209.x.10.1111/j.1574-6968.2011.02209.x21219415
  18. Lies A., Delteil A., Prin Y., Duponnois R. 2018. Using mycorrhiza helper microorganisms (MHM) to improve the mycorrhizal efficiency on plant growth. In: Meena V. (Ed.), Role of rhizospheric microbes in soil. Springer, pp. 277–298. DOI: 1007/978-981-10-8402-7_11.10.1007/978-981-10-8402-7_11
  19. Lim T.K. 2014. Impatiens balsamina. Edible medicinal and non-medicinal plants 7: 537–547. DOI: 10.1007/978-94-007-7395-0_33.10.1007/978-94-007-7395-0_33
  20. López-Bucio J., Campos-Cuevas J.C., Hernández-Calderón E., Velásquez-Becerra C., Farías-Rodríguez R., Macías-Rodríguez L.I., Valencia-Cantero E. 2007. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Molecular Plant-Microbe Interactions 20(2): 207–217. DOI: 10.1094/mpmi-20-2-0207.10.1094/MPMI-20-2-020717313171
  21. Marulanda-Aguirre A., Azcón R, Ruiz-Lozano J.M., Aroca R. 2008. Differential effects of a Bacillus megaterium strain on Lactuca sativa plant growth depending on the origin of the arbuscular mycorrhizal fungus coinoculated: physiologic and biochemical traits. Journal of Plant Growth Regulation 27: 10–18. DOI: 10.1007/s00344-007-9024-5.10.1007/s00344-007-9024-5
  22. Maússe-Sitoe S.N.D., Chen S., Wingfield M.J., Roux J. 2016. Diseases of eucalypts in the central and northern provinces of Mozambique. Southern Forest 78: 169–183. DOI: 10.2989/20702620.2015.1126780.10.2989/20702620.2015.1126780
  23. McGonigle T.P., Miller M.H., Evans D.G., Fairchild G.L., Swan J.A. 1990. A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytologist 115: 495–501. DOI: 10.1111/j.1469-8137.1990.tb00476.x.10.1111/j.1469-8137.1990.tb00476.x33874272
  24. McKey D., Elias M., Pujol B., Duputié A. 2010. The evolutionary ecology of clonally propagated domesticated plants. New Phytologist 186: 318–332. DOI: 10.1111/j.1469-8137.2010.03210.x.10.1111/j.1469-8137.2010.03210.x20202131
  25. Montero-Calasanz M.C., Santamaría C., Albareda M., Daza A., Duan J., Glick B.R., Camacho M. 2013. Alternative rooting induction of semi-hardwood olive cuttings by several auxin-producing bacteria for organic agriculture systems. Spanish Journal of Agricultural Research 11: 146–154. DOI: 10.5424/sjar/2013111-2686.10.5424/sjar/2013111-2686
  26. Muthukumar T., Udaiyan K. 2006. Growth of nursery-grown bamboo inoculated with arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in two tropical soil types with and without fertilizer application. New Forest 31: 469–485. DOI: 10.1007/s11056-005-1380-z.10.1007/s11056-005-1380-z
  27. Newman E.I. 1966. A method of estimating the total length of root in a sample. Journal of Applied Ecology 3: 139–145. DOI: 10.2307/2401670.10.2307/2401670
  28. Oláh B., Brière Ch., Bécard G., Dénarié J., Gough C. 2005. Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant Journal 44:195–207. DOI: 10.1111/j.1365-313x.2005.02522.x.10.1111/j.1365-313X.2005.02522.x16212600
  29. Ortíz-Castro R., Valencia-Cantero E., López-Bucio J. 2008. Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signaling and Behavior 3: 263–265. DOI: 10.4161/psb.3.4.5204.10.4161/psb.3.4.5204263419719704649
  30. Ostonen I., Püttsepp Ü., Biel C., Alberton O., Bakker M.R., Lõhmus K. et al. 2007. Specific root length as an indicator of environmental change. Plant Biosystems 141: 426–442. DOI: 10.1080/11263500701626069.10.1080/11263500701626069
  31. Read P.E. 2015. Propagation by root cuttings. In: Beyl C.A., Trigiano R.N. (Eds.), Plant propagation concepts and laboratory exercises, 2nd ed. CRC Press, pp. 283–286. DOI: 10.1201/b17340.10.1201/b17340
  32. Rich M.K., Nouri E., Courty P.E., Reinhardt D. 2017. Diet of arbuscular mycorrhizal fungi: bread and butter? Trends in Plant Science 22: 652–660. DOI: 10.1016/j.tplants.2017.05.008.10.1016/j.tplants.2017.05.00828622919
  33. Ryser P. 2006. The mysterious root length. Plant and Soil 286: 1–6. DOI: 10.1007/s11104-006-9096-1.10.1007/s11104-006-9096-1
  34. Sinclair G., Charest Ch., Dalpé Y., Khanizadeh S. 2014. Influence of colonization by arbuscular mycorrhizal fungi on three strawberry cultivars under salty conditions. Agricultural and Food Science 23: 146–158. DOI: 10.23986/afsci.9552.10.23986/afsci.9552
  35. Singh R., Soni S.K., Kalra A. 2013. Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 23: 35–44. DOI: 10.1007/s00572-012-0447-x.10.1007/s00572-012-0447-x22648372
  36. Szabó V., Németh Z., Hrotkó K. 2013. Improved rooting by different plant growth regulator treatments on Prunus mahaleb L. cuttings. Acta Horticulturae 981: 431–436. DOI: 10.17660/actahortic.2013.981.68.10.17660/ActaHortic.2013.981.68
  37. Vafadar F., Amooaghaie R., Otroshy M. 2014. Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. Journal of Plant Interactions 9: 128–136. DOI: 10.1080/17429145.2013.779035.10.1080/17429145.2013.779035
  38. Zou Ch., Li Z., Yu D. 2010. Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. Journal of Microbiology 48: 460–466. DOI: 10.1007/s12275-010-0068-z.10.1007/s12275-010-0068-z20799087
DOI: https://doi.org/10.2478/johr-2019-0015 | Journal eISSN: 2353-3978 | Journal ISSN: 2300-5009
Language: English
Page range: 11 - 22
Submitted on: May 1, 2019
Accepted on: Oct 1, 2019
Published on: Dec 31, 2019
Published by: National Institute of Horticultural Research
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Muthukumar Thangavelu, Prabhu Arumugam, published by National Institute of Horticultural Research
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.