Have a personal or library account? Click to login
Magnetized Phosphorus Solution and Mycorrhization with Diversispora versiformis Affect P Use Efficiency, Growth and Photosynthetic Parameters in Sweet Basil (Ocimum basilicum) Cover

Magnetized Phosphorus Solution and Mycorrhization with Diversispora versiformis Affect P Use Efficiency, Growth and Photosynthetic Parameters in Sweet Basil (Ocimum basilicum)

Open Access
|Dec 2019

References

  1. Aladjadjiyan A. 2007. The use of physical methods for plant growing stimulation in Bulgaria. Journal of Central European Agriculture 8(3): 369–380.
  2. Aliverdi A., Parsa, M., Hammami H. 2015. Increased soyabean-rhizobium symbiosis by magnetically treated water. Biological Agriculture and Horticulture 31(3): 167–176. DOI: 10.1080/01448765.2014.996253.10.1080/01448765.2014.996253
  3. Al-Khazan M., Abdullatif, B.M., Al-Assaf N. 2011. Effects of magnetically treated water on water status, chlorophyll pigments and some elements content of Jojoba (Simmondsia chinensis L.) at different growth stages. African Journal of Environmental Science and Technology 5: 722–731. DOI: 10.5897/ajest11.117.
  4. Akhtar M.S., Oki, Y., Adachi T. 2009. Mobilization and acquisition of sparingly soluble P-sources by Brassica cultivars under P-starved environment. I. Differential growth response, P-efficiency characteristics and P-remobilization. Journal of Integrative Plant Biology 51(11): 1008–1023. DOI: 10.1111/j.1744-7909.2009.00874.x.10.1111/j.1744-7909.2009.00874.x19903223
  5. Augé R.M. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11: 3–42. DOI: 10.1007/s005720100097.10.1007/s005720100097
  6. Belyavskaya N.A. 2004. Biological effects due to weak magnetic field on plants. Advances in Space Research 34: 1566–1574. DOI: 10.1016/j.asr.2004.01.021.10.1016/j.asr.2004.01.02115880893
  7. Carter G.A., Knapp A.K. 2001. Leaf optical properties in highest plants: Linking spectral characteristics to stress and chlorophyll concentration. American Journal of Botany 88(4): 677–684. DOI: 10.2307/2657068.10.2307/2657068
  8. Chen Y.-Y., Hu C.-Y., Xiao J.-X. 2014. Effects of arbuscular mycorrhizal inoculation on the growth, zinc distribution and photosynthesis of two citrus cultivars grown in low-zinc soil. Trees 28: 1427–1436. DOI: 10.1007/s00468-014-1046-6.10.1007/s00468-014-1046-6
  9. Childers D.L., Corman J., Edwards M., Elser J.J. 2011. Sustainability challenges of phosphorus and food: Solutions from closing the human phosphorus cycle. Bioscience 61: 117–124. DOI: 10.1525/bio.2011.61.2.6.10.1525/bio.2011.61.2.6
  10. Colla G., Rouphael Y., Cardarelli M., Tullio M., Rivera C.M., Rea E. 2008. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biology and Fertility of Soils 44: 501–509. DOI: 10.1007/s00374-007-0232-8.10.1007/s00374-007-0232-8
  11. Cordell D., Drangert J.-O., White S. 2009. The story of phosphorus: Global food security and food for thought. Global Environmental Change 19: 292–305. DOI: 10.1016/j.gloenvcha.2008.10.009.10.1016/j.gloenvcha.2008.10.009
  12. Demir S. 2004. Influence of arbuscular mycorrhiza on some physiological growth parameters of pepper. Turkish Journal of Biology 28: 85–90.
  13. Feng G., Zhang F.S., Li X.L., Tian C.Y., Tang C., Rengel Z. 2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12: 185–190. DOI: 10.1007/s00572-002-0170-0.10.1007/s00572-002-0170-012189473
  14. Grant C.A., Flaten D.N., Tomasiewicz D.J., Sheppard S.C. 2001. The importance of early season phosphorus nutrition. Canadian Journal of Plant Science 81(2): 211–224. DOI: 10.4141/p00-093.10.4141/P00-093
  15. Gregory P.J. 2006. Plant roots. Growth, activity and interaction with soils. Blackwell Publishing, 318 p. DOI: 10.1002/9780470995563.10.1002/9780470995563
  16. Ghanati F., Mohamadalikhani S., Soleimani M., Afzalzadeh R., Hajnorouzi A. 2015. Change of growth pattern, metabolism, and quality and quantity of maize plants after irrigation with magnetically treated water. Electromagnetic Biology and Medicine 34(3): 211–215. DOI: 10.3109/15368378.2015.1076453.10.3109/15368378.2015.1076453
  17. Hajnorouzi A., Vaezzadeh M., Ghanati F., Jamnezhad H., Nahidian B. 2011. Growth promotion and a decrease of oxidative stress in maize seedlings by a combination of geomagnetic and weak electromagnetic fields. Journal of Plant Physiology 168: 1123–1128. DOI: 10.1016/j.jplph.2010.12.003.10.1016/j.jplph.2010.12.003
  18. Hilal M.H., Shata S.M., Abdel-Dayem A.A., Hilal M.M. 2002. Application of magnetic technologies in desert agriculture. III. Effect of magnetized water on yield and uptake of certain elements by citrus in relation to nutrients mobilization in soil. Egyptian Journal of Soil Science 42(1): 43–56.
  19. Jokubauskaitė I., Karčauskienė D., Antanaitis Š., Mažvila J., Šlepetienė A., Končius D., Piaulokaitė-Motuzienė L. 2015. The distribution of phosphorus forms and fractions in retisol under different soil liming management. Zemdirbyste–Agriculture 102(3): 251–256. DOI: 10.13080/z-a.2015.102.032.10.13080/z-a.2015.102.032
  20. Lichtenthaler H.K., Buschmann C. 2001. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Current Protocols in Food Analytical Chemistry 1(1); F4.3; 8 p. DOI: 10.1002/0471142913.faf0403s01.10.1002/0471142913.faf0403s01
  21. Lin I.J., Yotvat J. 1990. Exposure of irrigation and drinking water to a magnetic field with controlled power and direction. Journal of Magnetism and Magnetic Materials 83: 525–526. DOI: 10.1016/0304-8853(90)90611-s.10.1016/0304-8853(90)90611-S
  22. MacDonald G.K., Bennett E.M., Potter P.A., Ramankutty N. 2011. Agronomic phosphorus imbalances across the world’s croplands. Proceedings of the National Academy of Sciences 108: 3086–3091. DOI: 10.1073/pnas.1010808108.10.1073/pnas.1010808108304109621282605
  23. Machado C.T. de T., Furlani Â.M.C. 2004. Kinetics of phosphorus uptake and root morphology of local and improved varieties of maize. Scientia Agricola 61: 69–76. DOI: 10.1590/s0103-90162004000100012.10.1590/S0103-90162004000100012
  24. Maheshwari B.L., Grewal H.S. 2009. Magnetic treatment of irrigation water: its effects on vegetable crop yield and water productivity. Agricultural Water Management 96: 1229–36. DOI: 10.1016/j.agwat.2009.03.016.10.1016/j.agwat.2009.03.016
  25. Miransari M. 2010. Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biology 12: 563–569. DOI: 10.1111/j.1438-8677.2009.00308.x.10.1111/j.1438-8677.2009.00308.x20636898
  26. Pang X.-F., Deng B. 2008. The changes of macroscopic features and microscopic structures of water under influence of magnetic field. Physica B 403: 3571–3577. DOI: 10.1016/j.physb.2008.05.032.10.1016/j.physb.2008.05.032
  27. Podleśny J., Pietruszewski S., Podleśna A. 2004. Efficiency of the magnetic treatment of broad bean seeds cultivated under experimental plot conditions. International Agrophysics 18: 65–71.
  28. Porcel R., Redondo-Gómez S., Mateos-Naranjo E., Aroca R., Garcia R., Ruiz-Lozano J.M. 2015. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. Journal of Plant Physiology 185: 75–83. DOI: 10.1016/j.jplph.2015.07.006.10.1016/j.jplph.2015.07.00626291919
  29. Rãcuciu M., Creangã D., Horga I. 2008. Plant growth under static magnetic field influence. Romanian Journal of Physics 53(1–2): 353–359.
  30. Sadeghipour O., Aghaei P. 2013. Improving the growth of cowpea (Vigna unguiculata L. Walp.) by magnetized water. Journal of Biodiversity and Environmental Sciences 3(1): 37–43.
  31. Sannazzaro A.I., Ruiz O.A., Albertó E.O., Menéndez A.B. 2006. Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant and Soil 285: 279–287. DOI: 10.1007/s11104-006-9015-5.10.1007/s11104-006-9015-5
  32. Shabani E., Bolandnazar S., Tabatabaei S.J., Najafi N., Alizadeh-Salteh S. 2017. Motivate the production of pharmaceutical compounds in Ocimum basilicum by magnetic phosphorus solution and arbuscular mycorrhizal fungi. Journal of Biodiversity and Environmental Sciences 11(3): 31–45.
  33. Shabani E., Bolandnazar S., Tabatabaei S.J., Najafi N., Alizadeh-Salteh S., Rouphael Y. 2018. Stimulation in the movement and uptake of phosphorus in response to magnetic P solution and arbuscular mycorrhizal fungi in Ocimum basilicum. Journal of Plant Nutrition 41(13): 1662–1673. DOI: 10.1080/01904167.2018.1458872.10.1080/01904167.2018.1458872
  34. Shen J., Yuan L., Zhang J., Li H., Bai Z., Chen X. et al. 2011. Phosphorus dynamics: From soil to plant. Plant Physiology 156: 997–1005. DOI: 10.1104/pp.111.175232.10.1104/pp.111.175232313593021571668
  35. Sheng M., Tang M., Chen H., Yang B., Zhang F., Huang Y. 2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18(6–7): 287–296. DOI: 10.1007/s00572-008-0180-7.10.1007/s00572-008-0180-718584217
  36. Siddiqi M.Y., Glass A.D.M. 1981. Utilization index: A modified approach to the estimation and comparison of nutrient utilization efficiency in plants. Journal of Plant Nutrition 4(3): 289–302. DOI: 10.1080/01904168109362919.10.1080/01904168109362919
  37. Soltani F., Kashi A., Arghavani M. 2006. Effect of magnetic field on Asparagus officinalis L. seed germination and seedling growth. Seed Science and Technology 34: 349–353. DOI: 10.15258/sst.2006.34.210.10.15258/sst.2006.34.2.10
  38. Turker M., Temirci C., Battal P., Erez M.E. 2007. The effects of an artificial and static magnetic field on plant growth, chlorophyll and phytohormone levels in maize and sunflower plants. Phyton, Annales Rei Botanicae 46: 271–284.
  39. Zarei M., Saleh-Rastin N., Alikhani H.A., Aliasgharzadeh N. 2006. Responses of lentil to co-inoculation with phosphate-solubilizing rhizobial strains and arbuscular mycorrhizal fungi. Journal of Plant Nutrition 29: 1509–1522. DOI: 10.1080/01904160600837667.10.1080/01904160600837667
  40. Zhang J., Zhou K., Wang L., Gao M. 2014. Extremely low-frequency magnetic fields affect pigment production of Monascus purpureus in liquid-state fermentation. European Food Research and Technology 238(1): 157–62. DOI: 10.1007/s00217-013-2096-5.10.1007/s00217-013-2096-5
DOI: https://doi.org/10.2478/johr-2019-0010 | Journal eISSN: 2353-3978 | Journal ISSN: 2300-5009
Language: English
Page range: 103 - 112
Submitted on: Sep 1, 2018
Accepted on: Oct 1, 2019
Published on: Dec 31, 2019
Published by: National Institute of Horticultural Research
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Edris Shabani, Sahebali Bolandnazar, Seyed Jalal Tabatabaei, published by National Institute of Horticultural Research
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.