Have a personal or library account? Click to login
Effects of Light Wavelength on Daughter Cladode Growth and Quality in Edible Cactus Nopalea cochenillifera Cultured in a Plant Factory with Artificial Light Cover

Effects of Light Wavelength on Daughter Cladode Growth and Quality in Edible Cactus Nopalea cochenillifera Cultured in a Plant Factory with Artificial Light

Open Access
|Dec 2018

References

  1. Acevedo E., Badilla I., Nobel P.S. 1983. Water relations, diurnal activity changes, and productivity of a cultivated cactus, Opuntia ficus-indica. Plant Physiology 72: 775–780. DOI: 10.1104/pp.72.3.775.10.1104/pp.72.3.775
  2. Bobich E.G., Nobel P.S. 2001. Vegetative reproduction as related to biomechanics, morphology and anatomy of four cholla cactus species in the Sonoran Desert. Annals of Botany 87: 485–493. DOI: 10.1006/anbo.2000.1360.10.1006/anbo.2000.1360
  3. Cui M., Miller P.M., Nobel P.S. 1993. CO2 exchange and growth of the crassulacean acid metabolism plant Opuntia ficus-indica under elevated CO2 in open-top chambers. Plant Physiology 103: 519–524. DOI: 10.1104/pp.103.2.519.10.1104/pp.103.2.519
  4. Cruz-Hernández A., Paredes-López O. 2010. Enhancement of economical value of nopal and its fruits through biotechnology. Journal of the Professional Association for Cactus Development 12: 110–126.
  5. Devlin P.F., Kay S.A. 2000. Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. Plant Cell 12: 2499–2510. DOI: 10.1105/tpc.12.12.2499.10.1105/tpc.12.12.2499
  6. du Toit R., Volsteedt Y., Apostolides Z. 2001. Comparison of the antioxidant content of fruits, vegetables and teas measured as vitamin C equivalents. Toxicology 166: 63–69. DOI: 10.1016/s0300-483x(01)00446-2.10.1016/s0300-483x(01)00446-2
  7. Drennan P.M., Nobel P.S. 2000. Responses of CAM species to increasing atmospheric CO2 concentrations. Plant, Cell and Environment 23: 767–781. DOI: 10.1046/j.1365-3040.2000.00588.x.10.1046/j.1365-3040.2000.00588.x
  8. El-Mostafa K., El Kharrassi Y., Badreddine A., Andre-oletti P., Vamecq J., El Kebbaj M.S. et al. M. 2014. Nopal cactus (Opuntia ficus-indica) as a source of bioactive compounds for nutrition, health and disease. Molecules 19: 14879–14901. DOI: 10.3390/molecules190914879.10.3390/190914879
  9. Frego K.A., Staniforth R.J. 1985. Factors determining the distribution of Opuntia fragilis in the boreal forest of southeastern Manitoba. Canadian Journal of Botany 63: 2377–2382. DOI: 10.1139/b85-340.10.1139/b85-340
  10. García-Saucedo P.A., Valdez-Morales M., Valverde M.E., Cruz-Hernández A., Paredes-López O. 2005. Plant regeneration of three Opuntia genotypes used as human food. Plant Cell, Tissue and Organ Culture 80: 215–219. DOI: 10.1007/s11240-004-9158-0.10.1007/s11240-004-9158-0
  11. Gulmon S.L., Bloom A.J. 1979. C3 photosynthesis and high temperature acclimation of CAM in Opuntia basilaris Engelm. and Bigel. Oecologia 38: 217–222. DOI: 10.1007/bf00346565.10.1007/BF0034656528308891
  12. Guzmán-Maldonado S.H., Paredes-López O. 1999. Bio-technology for the improvement of nutritional quality of food crop plants. In: Paredes-López O. (Ed.), Molecular biotechnology for plant food production. CRC Press, p. 553–620.
  13. Hidaka K., Okamoto A., Araki T., Miyoshi Y., Dan K., Imamura H., Kitano M. et al. 2014. Effect of photoperiod of supplemental lighting with light-emitting diodes on growth and yield of strawberry. Environmental Control in Biology 52: 63–71. DOI: 10.2525/ecb.52.63.10.2525/ecb.52.63
  14. Hirama J. 2015. The history and advanced technology of plant factories. Environment Control in Biology 53: 47–48. DOI: 10.2525/ecb.53.47.10.2525/ecb.53.47
  15. Horibe T., Yamada K. 2016. Hydroponics culture of edible Opuntia ‘Maya’: drought stress affects the development of spines on daughter cladodes. Environment Control in Biology 54: 153–156. DOI: 10.2525/ecb.54.153.10.2525/ecb.54.153
  16. Horibe T. 2017. A cost-effective, simple, and productive method of hydroponic culture of edible Opuntia “Maya”. Environment Control in Biology 55: 171–174. DOI: 10.2525/ecb.55.171.10.2525/ecb.55.171
  17. Hughes R.M., Vrana J.D., Song J., Tucker C.L. 2012. Light-dependent, dark-promoted interaction between Arabidopsis cryptochrome 1 and phyto-chrome B proteins. Journal of Biological Chemistry 287: 22165–22172. DOI: 10.1074/jbc.m112.360545.10.1074/jbc.M112.360545338117622577138
  18. Ju J., Bai H., Zheng Y., Zhao T., Fang R., Jiang L. 2012. A multi-structural and multi-functional integrated fog collection system in cactus. Nature Communications 3: 1247. DOI: 10.1038/ncomms2253.10.1038/ncomms2253353533523212376
  19. Johkan M., Shoji K., Goto F., Hashida S., Yoshihara T. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45: 1809–1814. DOI: 10.21273/hortsci.45.12.1809.10.21273/HORTSCI.45.12.1809
  20. Kigel J., Cosgrove D.J. 1991. Photoinhibition of stem elongation by blue and red light. Effects on hydraulic and cell wall properties. Plant Physiology 95: 1049–1056. DOI: 10.1104/pp.95.4.1049.10.1104/pp.95.4.1049107765011537486
  21. Kozai T. 2013. Plant factory in Japan – current situation and perspectives. Chronica Horticulturae 53: 8–11.
  22. Lakkireddy K.K.R., Kasturi K., Sambasiva Rao R.K.S. 2012. Role of hydroponics and aeroponics in soilless culture in commercial food production. Journal of Agricultural Science and Technology 1: 26–35.
  23. Li H., Tang C., Xu Z., Liu X., Han X. 2012. Effects of different light sources on the growth of non-heading Chinese cabbage (Brassica campestris L.). Journal of Agricultural Science 4: 262–273. DOI: 10.5539/jas.v4n4p262.10.5539/jas.v4n4p262
  24. Littlejohn R.O., Ku M.S.B. 1985. Light and temperature regulation of early morning crassulacean acid metabolism in Opuntia erinacea var columbiana (Griffiths) L. Benson. Plant Physiology 77: 489–491. DOI: 10.1104/pp.77.2.489.10.1104/pp.77.2.489106454316664082
  25. Loik M.E. 2008. The effect of cactus spines on light interception and Photosystem II for three sympatric species of Opuntia from the Mojave Desert. Physiologia Plantarum 134: 87–98. DOI: 10.1111/j.1399-3054.2008.01110.x.10.1111/j.1399-3054.2008.01110.x
  26. Maas F.M., Bakx E.J., Morris D.A. 1995. Photocontrol of stem elongation and dry weight portioning in Phaseolus vulgaris L. by the blue-light content of photosynthetic photon flux. Journal of Plant Physiology 146: 665–671. DOI: 10.1016/s0176-1617(11)81930-9.10.1016/s0176-1617(11)81930-9
  27. Monson R.K. 1989. On the evolutionary pathways resulting in C4 photosynthesis and crassulacean acid metabolism (CAM). Advances in Ecological Research 19: 57–110. DOI: 10.1016/s0065-2504(08)60157-9.10.1016/S0065-2504(08)60157-9
  28. Mortensen L.M., Strømme E. 1987. Effects of light quality on some greenhouse crops. Scientia Horticulturae 33: 27–36. DOI: 10.1016/0304-4238(87)90029-x.10.1016/0304-4238(87)90029-x
  29. Nobel P.S., Geller G.N., Kee S.C., Zimmerman A.D. 1986. Temperatures and thermal tolerances for cacti exposed to high temperatures near the soil surface. Plant, Cell and Environment 9: 279–287. DOI: 10.1111/1365-3040.ep11611688.10.1111/1365-3040.ep11611688
  30. Nobel P.S., Israel A.A. 1994. Cladode development, environmental responses of CO2 uptake, and productivity for Opuntia ficus-indica under elevated CO2. Journal of Experimental Botany 45: 295–303. DOI: 10.1093/jxb/45.3.295.10.1093/jxb/45.3.295
  31. Norman F., Martin C.E. 1986. Effects of spine removal on Coryphantha vivipara in central Kansas. American Midland Naturalist 116: 118–124. DOI: 10.2307/2425943.10.2307/2425943
  32. North G.B., Lin Moore T., Nobel P.S. 1995. Cladode development for Opuntia ficus-indica (Cactaceae) under current and doubled CO2 concentrations. American Journal of Botany 82: 159–166. DOI: 10.2307/2445524.10.2307/2445524
  33. Ogawa A., Eguchi T., Toyofuku K. 2012. Cultivation methods for leafy vegetables and tomatoes with low potassium content for dialysis patients. Environment Control in Biology 50: 407–414. DOI: 10.2525/ecb.50.407.10.2525/ecb.50.407
  34. Osmond C.B. 1978. Crassulacean acid metabolism: a curiosity in context. Annual Review of Plant Physiology 29: 379–414. DOI: 10.1146/annurev.pp.29.060178.002115.10.1146/annurev.pp.29.060178.002115
  35. Pimienta-Barrios E., Zañudo-Hernandez J., Rosas-Espinoza V.C., Valenzuela-Tapia A., Nobel P.S. 2005. Young daughter cladodes affect CO2 uptake by mother cladodes of Opuntia ficus-indica. Annals of Botany 95: 363–369. DOI: 10.1093/aob/mci034.10.1093/aob/mci034
  36. Shetty A.A., Rana M.K., Preetham S.P. 2012. Cactus: a medicinal food. Journal of Food Science and Technology 49: 530–536. DOI: 10.1007/s13197-011-0462-5.10.1007/s13197-011-0462-5
  37. Shibutani S., Kinoshita K. 1968. Studies on the ecological adaptation of lettuce. III. The ecological adaptation of Great Lakes 54 in the growth cabinet in which the temperature is controlled. Scientific reports of the Faculty of Agriculture, Okayama University 32: 25–34. [in Japanese with English abstract]
  38. Silos-Espino H., Valdez-Ortiz A., Rascón-Cruz Q., Rodríguez-Salazar E., Paredes-López O. 2006. Genetic transformation of prickly-pear cactus (Opuntia ficus-indica) by Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture 86: 397–403. DOI: 10.1007/s11240-006-9123-1.10.1007/s11240-006-9123-1
  39. Stefanelli D., Winkler S., Jones R. 2011. Reduced nitrogen availability during growth improves quality in red oak lettuce leaves by minimizing nitrate content, and increasing antioxidant capacity and leaf mineral content. Agricultural Sciences 2: 477–486. DOI: 10.4236/as.2011.24061.10.4236/as.2011.24061
  40. Stintzing F.C., Carle R. 2005. Cactus stems (Opuntia spp.): a review on their chemistry, technology, and uses. Molecular Nutrition and Food Research 49: 175–194. DOI: 10.1002/mnfr.200400071.10.1002/mnfr.200400071
  41. Stutte G.W., Edney S., Skerritt T. 2009. Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. HortScience 44: 79–82. DOI: 10.21273/hortsci.44.1.79.10.21273/HORTSCI.44.1.79
  42. Tinyane P.P., Sivakumar D., Soundy P. 2013. Influence of photo-selective netting on fruit quality parameters and bioactive compounds in selected tomato cultivars. Scientia Horticulturae 161: 340–349. DOI: 10.1016/j.scienta.2013.06.024.10.1016/j.scienta.2013.06.024
  43. Wahome P.K., Oseni T.O., Masarirambi M.T., Shongwe V.D. 2011. Effects of different hydroponics systems and growing media on the vegetative growth, yield and cut flower quality of gypsophila (Gypsophila paniculata L.). World Journal of Agricultural Sciences 7: 692–698.
  44. Wang H.-J., Wu L.-H., Wang M.-Y., Zhu Y.-H., Tao Q.- N., Zhang F.-S. 2007. Effects of amino acids replacing nitrate on growth, nitrate accumulation, and macroelement concentrations in pak-choi (Brassica chinensis L.). Pedosphere 17: 595–600. DOI: 10.1016/s1002-0160(07)60070-8.10.1016/S1002-0160(07)60070-8
  45. Wang Y., Folta K.M. 2013. Contributions of green light to plant growth and development. American Journal of Botany 100: 70–78. DOI: 10.3732/ajb.1200354.10.3732/ajb.120035423281393
  46. Yamori W., Zhang G., Takagaki M., Maruo T. 2014. Feasibility study of rice growth in plant factories. Rice Research 2(1); 119; 6 p. DOI: 10.4172/jrr.1000119.10.4172/jrr.1000119
  47. Yanagi T., Yachi T., Okuda N., Okamoto K. 2006. Light quality of continuous illuminating at night to induce floral initiation of Fragaria chiloensis L. CHI- 24-1. Scientia Horticulturae 109: 309–314. DOI: 10.1016/j.scienta.2006.05.009.10.1016/j.scienta.2006.05.009
  48. Yanata S., Takata K. 2014. Plant factory: The possible measures to revitalize the Wakayama’s economy. Regional Studies 43 (revised edition). Institute of Economic Research, Faculty of Economics, Wakayama University, 22 p.
  49. Zhao X., Yu X., Foo E., Symons G.M., Lopez J., Bendehakkalu K.T. et al. 2007. A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation. Plant Physiology 145: 106–118. DOI: 10.1104/pp.107.099838.10.1104/pp.107.099838197657917644628
  50. Zhang T., Maruhnich S., Folta K.M. 2011. Green light induces shade avoidance symptoms. Plant Physiology 157: 1528–1536. DOI: 10.1104/pp.111.180661.10.1104/pp.111.180661325213721852417
DOI: https://doi.org/10.2478/johr-2018-0018 | Journal eISSN: 2353-3978 | Journal ISSN: 2300-5009
Language: English
Page range: 71 - 80
Submitted on: Aug 1, 2018
Accepted on: Apr 1, 2019
Published on: Dec 31, 2018
Published by: National Institute of Horticultural Research
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 Takanori Horibe, Shousei Imai, Takuya Matsuoka, published by National Institute of Horticultural Research
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.