Have a personal or library account? Click to login

Pomegranate Fruit Quality Assessment Using Machine Intelligence and Wavelet Features

Open Access
|Jun 2018

References

  1. APEDA 2015. Pomegranate. In: Study on identification of export oriented integrated infrastructure for agri products from Maharashtra & Gujarat. Agriculture Produce Export Development Authority, pp. 20–22.
  2. Arefi A., Motlagh A.M., Mollazade K., Teimourlou R.F. 2011. Recognition and localization of ripen tomato based on machine vision. Australian Journal of Crop Science 5(10): 1144–1149.
  3. Babu K.D., Marathe R.A., Jadhav V.T. 2012. Post harvest management of pomegranate. ICAR – National Research Centre on Pomegranate, Solapur, India, 116 p.
  4. Benagi V.I., Nargund V., Balikai R., Ravikumar M. 2009. Pomegranate – Identification and Management of Diseases, Insect Pests and Disorders. University of Agricultural Sciences, Dharwad, India.
  5. Clement J., Novas N., Gazquez J.A., Manzano-Agugliaro F. 2013. An active contour computer algorithm for the classification of cucumbers. Computers and Electronics in Agriculture 92: 75–81. DOI: 10.1016/j.compag.2013.01.006.10.1016/j.compag.2013.01.006
  6. Deepa P., Geethalakshmi S.N. 2011. Improved water-shed segmentation for apple fruit grading. Proceedings of the International Conference on Process Automation, Control and Computing, IEEE, 5 p. DOI: 10.1109/pacc.2011.5979003.10.1109/pacc.2011.5979003
  7. Dua S., Acharya U.R., Chowriappa P., Sree S.V. 2012. Wavelet-based energy features for glaucomatous image classification. IEEE Transactions on Information Technology in Biomedicine 16(1): 80–87. DOI: 10.1109/titb.2011.2176540.10.1109/titb.2011.217654022113813
  8. Font D., Tresanchez M., Pallejà T., Teixidó M., Martinez D., Moreno J., Palacín J. 2014. An image processing method for in-line nectarine variety verification based on the comparison of skin feature histogram vectors. Computers and Electronics in Agriculture 102: 112–119. DOI: 10.1016/j.com-pag.2014.01.013.10.1016/j.com-pag.2014.01.013
  9. Ghazali K.H., Mansor M.F., Mustafa M.M., Hussain A. 2007. Feature extraction technique using discrete wavelet transform for image classification. Proceedings of the 5th Student Conference on Research and Development, IEEE, 4 p. DOI: 10.1109/scored.2007.4451366.10.1109/scored.2007.4451366
  10. Gonzalez R.C., Woods R.E., Eddins S.L. 2009. Digital Image Processing Using MATLAB, 2nd edition. Gatesmark Publishing, 827 p.10.1117/1.3115362
  11. Hazra T.K., Guhathakurta R. 2016. Comparing wavelet and wavelet packet image denoising using thresholding techniques. International Journal of Science and Research 5(6): 790–796. DOI: 10.21275/v5i6.nov164305.10.21275/v5i6.NOV164305
  12. Jamil N., Mohamed A., Abdullah S. 2009. Automated grading of palm oil fresh fruit bunches (FFB) using neuro-fuzzy technique. Proceedings of the International Conference of Soft Computing and Pattern Recognition, IEEE, pp. 245–249. DOI: 10.1109/socpar.2009.57.10.1109/socpar.2009.57
  13. Mustafa N.B.A., Ahmed S.K., Ali Z., Yit W.B., Abidin A.A.Z., Sharrif Z.A.M. 2009. Agricultural produce sorting and grading using support vector machines and fuzzy logic. Proceedings of the International Conference on Signal and Image Processing Applications, IEEE, pp. 391–396. DOI: 10.1109/ic-sipa.2009.5478684.10.1109/ic-sipa.2009.5478684
  14. Omid M., Abbasgolipour M., Keyhani A., Mohtasebi S.S. 2010. Implementation of an efficient image processing algorithm for grading raisins. International Journal of Signal and Image Processing 1(1): 31–34.
  15. Rocha A., Hauagge D.C., Wainer J., Goldenstein S. 2010. Automatic fruit and vegetable classification from images. Computers and Electronics in Agriculture 70(1): 96–104. DOI: 10.1016/j.compag.2009.09.002.10.1016/j.compag.2009.09.002
  16. Teimouri N., Omid M., Mollazade K., Rajabipour A. 2014. A novel artificial neural networks assisted segmentation algorithm for discriminating almond nut and shell from background and shadow. Computers and electronics in agriculture 105: 34–43. DOI: 10.1016/j.compag.2014.04.008.10.1016/j.compag.2014.04.008
  17. Youwen T., Tianlai L., Yan N. 2008. The recognition of cucumber disease based on image processing and support vector machine. Proceedings of the Congress on Image and Signal Processing 2: 262–267. DOI: 10.1109/cisp.2008.29.10.1109/CISP.2008.29
DOI: https://doi.org/10.2478/johr-2018-0006 | Journal eISSN: 2353-3978 | Journal ISSN: 2300-5009
Language: English
Page range: 53 - 60
Submitted on: Mar 1, 2018
Accepted on: Jun 1, 2018
Published on: Jun 29, 2018
Published by: National Institute of Horticultural Research
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2018 Arun Kumar R., Vijay S. Rajpurohit, Bhairu J. Jirage, published by National Institute of Horticultural Research
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.