References
- Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. DOI: 10.1006/jmbi.1990.9999.10.1016/S0022-2836(05)80360-2
- Anonymous 2013. PM 7/20 (2) Erwinia amylovora, EPPO Bulletin/Bulletin OEPP 43: 21-45.10.1111/epp.12019
- Bereswill S., Pahl A., Bellemann P., Zeller W., Geider K. 1992. Sensitive and species-specific detection of Erwinia amylovora by polymerase chain-reaction analysis. Appl. Environ. Microb. 58: 3522-3526.10.1128/aem.58.11.3522-3526.19921831391482178
- Fang X., Liu Y., Kong J., Jiang X. 2010. Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens. Anal. Chem. 82: 3002-3006. DOI: 10.1021/ac1000652.10.1021/ac100065220218572
- Gill P., Ghaemi A. 2008. Nucleic acid isothermal amplification technologies - a review. Nucleos. Nucleot. Nucl. 27: 224-243. DOI: 10.1080/15257770701845204.10.1080/1525777070184520418260008
- Ishimaru C., Klos E.J. 1984. New medium for detecting Erwinia amylovora and its use in epidemiological studies. Phytopathology 74: 1342-1345. DOI: 10.1094/Phyto-74-1342.10.1094/Phyto-74-1342
- King E.O., Ward M.K., Raney D.E. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44: 301-307.
- Llop P., Donat V., Rodríguez M., Cabrefiga J., Ruz L., Palomo J.L., Montesinos E., López M.M. 2006. An indigenous virulent strain of Erwinia amylovora lacking the ubiquitous plasmid pEA29. Phytopathology 96: 900-907. DOI: 10.1094/PHYTO-96-0900.10.1094/PHYTO-96-090018943756
- Maes M., Garbeva P., Crepel C. 1996. Identification and sensitive endophytic detection of the fire blight pathogen Erwinia amylovora with 23S ribosomal DNA sequences and the polymerase chain reaction. Plant Pathol. 45: 1139-1149. DOI: 10.1046/j.1365-3059.1996.d01-186.x.10.1046/j.1365-3059.1996.d01-186.x
- Mohammadi M., Moltmann E., Zeller W., Geider K. 2009. Characterisation of naturally occurring Erwinia amylovora strains lacking the common plasmid pEA29 and their detection with real-time PCR. Eur. J. Plant Pathol. 124: 293-302. DOI: 10.1007/s10658-008-9417-8.10.1007/s10658-008-9417-8
- Moradi A., Nasiri J., Abdollahi H., Almasi M. 2012. Development and evaluation of a loop-mediated isothermal amplification assay for detection of Erwinia amylovora based on chromosomal DNA. Eur. J. Plant Pathol. 133: 609-620. DOI: 10.1007/s10658-012-9939-y.10.1007/s10658-012-9939-y
- Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N., Hase T. 2000. Loopmediated isothermal amplification of DNA. Nucleic Acids Res. 28, e63. DOI: 10.1093/nar/28.12.e63.10.1093/nar/28.12.e6310274810871386
- Salm H., Geider K. 2004. Real-time PCR for detection and quantification of Erwinia amylovora, the causal agent of fireblight. Plant Pathol. 53: 602-610. DOI: 10.1111/j.1365-3059.2004.01066.x.10.1111/j.1365-3059.2004.01066.x
- Sebaihia M., Bocsanczy A.M., Biehl B.S., Quail M.A., Perna N.T., Glasner J.D., DeClerck G.A., Cartinhour S., Schneider D.J., Bentley S.D., Parkhill J., Beer S.V. 2010. Complete genome sequence of the plant pathogen Erwinia amylovora strain ATCC 49946. J. Bacteriol. 192(7): 2020-2021. DOI:10.1128/JB.00022-10.10.1128/JB.00022-10283805020118253
- Sobiczewski P., Millikan D.F. 1985. Efficacy of chemicals for control of fire blight (Erwinia amylovora). Fruit Sci. Rep. 12: 27-34.