References
- Afaridegan, E., Amanian, N., Goodarzi, M.R., 2025a. Hybrid Machine Learning Models for Discharge Coefficient Prediction in Hydrofoil-Crested Stepped Spillways. Archives of Computational Methods in Engineering 32 (7): 4413–4445 DOI: 10.1007/s11831-025-10274-z
- Afaridegan, E., Fatahi-Alkouhi, R., Khalilian, S., Moradi-Eshgafti, A., Amanian, N., 2025b. Enhanced energy dissipation prediction in modified semi-cylindrical weirs using machine learning techniques. Modeling Earth Systems and Environment 11 (2): 131 DOI: 10.1007/s40808-025-02317-y
- Armanuos, A.M., Elshaarawy, M.K., 2025. Estimating saltwater wedge length in sloping coastal aquifers using explainable machine learning models. Earth Science Informatics 18 (2): 405 DOI: 10.1007/s12145-025-01900-2
- Armanuos, A.M., Zeleňáková, M., Elshaarawy, M.K., 2025. Explainable ML modeling of saltwater intrusion control with underground barriers in coastal sloping aquifers. Scientific Reports 15 (1): 29281 DOI: 10.1038/s41598-025-12830-w
- Asadi, M.J., Shabanlou, S., Najarchi, M., Najafizadeh, M.M., 2021. A Hybrid Intelligent Model and Computational Fluid Dynamics to Simulate Discharge Coefficient of Circular Side Orifices. Iranian Journal of Science and Technology, Transactions of Civil Engineering 45 (2): 985–1010 DOI: 10.1007/s40996-020-00390-0
- Asgharzadeh-Bonab, A., Bijanvand, S., Parsaie, A., Afaridegan, E., 2025. Machine learning-based estimation of discharge coefficient for semicircular labyrinth weirs. Scientific Reports 15 (1): 33002 DOI: 10.1038/s41598-025-18230-4
- Azimi, H., Bonakdari, H., Ebtehaj, I., 2019. Design of radial basis function-based support vector regression in predicting the discharge coefficient of a side weir in a trapezoidal channel. Applied Water Science 9: 1–12 DOI:10.1007/s13201-019-0961-5
- Azimi, H., Bonakdari, H., Ebtehaj, I., 2021. Gene expression programming-based approach for predicting the roller length of a hydraulic jump on a rough bed. ISH Journal of Hydraulic Engineering 27 (sup1): 77–87 DOI: 10.1080/09715010.2019.1579058
- Azimi, H., Shabanlou, S., Ebtehaj, I., Bonakdari, H., Kardar, S., 2017. Combination of Computational Fluid Dynamics, Adaptive Neuro-Fuzzy Inference System, and Genetic Algorithm for Predicting Discharge Coefficient of Rectangular Side Orifices. Journal of Irrigation and Drainage Engineering 143 (7): 4017015 DOI: 10.1061/(ASCE)IR.1943-4774.0001190
- Barzegar, R., Razzagh, S., Quilty, J., Adamowski, J., Kheyrollah Pour, H., Booij, M.J., 2021. Improving GALDIT-based groundwater vulnerability predictive mapping using coupled resampling algorithms and machine learning models. Journal of Hydrology 598 (February): 126370 DOI: 10.1016/j.jhydrol.2021.126370
- Beskopylny, A.N., Stel’makh, S.A., Shcherban’, E.M., Mailyan, L.R., Meskhi, B., Razveeva, I., Chernil’nik, A., Beskopylny, N., 2022. Concrete Strength Prediction Using Machine Learning Methods CatBoost, k-Nearest Neighbors, Support Vector Regression. Applied Sciences 12 (21): 10864 DOI: 10.3390/app122110864
- Bijanvand, S., Asgharzadeh-Bonab, A., Parsaie, A., Afaridegan, E., 2025. Enhanced prediction of discharge coefficients in Harmonic Plan Circular Weirs using advanced machine learning and ensemble techniques. Flow Measurement and Instrumentation 102: 102812 DOI: https://doi.org/10.1016/j.flowmeasinst.2025.102812
- Bos, M.G., 1989. Discharge measurement structures.
- Chanson, H., 2000, December. A review of accidents and failures of stepped spillways and weirs. In Proceedings of the Institution of Civil Engineers-Water and Maritime Engineering (Vol. 142, No. 4, pp. 177-188). Thomas Telford Ltd. doi: https://doi.org/10.1680/wame.2000.142.4.177.
- Das, P., Kashem, A., Hasan, I., Islam, M., 2024. A comparative study of machine learning models for construction costs prediction with natural gradient boosting algorithm and SHAP analysis. Asian Journal of Civil Engineering 25 (4): 3301–3316 DOI: 10.1007/s42107-023-00980-z
- Davies, L. and Gather, U., 1993. The identification of multiple outliers. Journal of the American Statistical Association, 88(423), pp.782-792. https://doi.org/10.1080/01621459.1993.10476339
- Deng, Y., Zhang, D., Zhang, D., Wu, J., Liu, Y., 2023. A hybrid ensemble machine learning model for discharge coefficient prediction of side orifices with different shapes. Flow Measurement and Instrumentation 91: 102372 DOI: 10.1016/j.flowmeasinst.2023.102372
- Ding, W., Jia, S., 2023. An Improved Equation for the Bearing Capacity of Concrete-Filled Steel Tube Concrete Short Columns Based on GPR. Buildings 13 (5): 1226 DOI: 10.3390/buildings13051226
- Dissanayake, C.K. and Farris, J.A., 2014. Assembly lines of the future: a literature review of research articles from 2000-2014. In Proceedings of the American Society for Engineering Management 2014 International Annual Conference (pp. 1-10).
- Dursun, O.F., Kaya, N. and Firat, M., 2012. Estimating discharge coefficient of semi-elliptical side weir using ANFIS. Journal of hydrology, 426, pp.55-62. DOI: https://doi.org/10.1016/j.jhydrol.2012.01.010
- Ebtehaj, I., Bonakdari, H., Khoshbin, F., Azimi, H., 2015a. Pareto genetic design of group method of data handling type neural network for prediction discharge coefficient in rectangular side orifices. Flow Measurement and Instrumentation 41: 67–74 DOI: 10.1016/j.flowmeasinst.2014.10.016
- Ebtehaj, I., Bonakdari, H., Zaji, A.H., Azimi, H., Khoshbin, F., 2015b. GMDH-type neural network approach for modeling the discharge coefficient of rectangular sharp-crested side weirs. Engineering Science and Technology, an International Journal 18 (4): 746–757 DOI: 10.1016/j.jestch.2015.04.012
- Elshaarawy, M.K., 2025a. Stacked-based hybrid gradient boosting models for estimating seepage from lined canals. Journal of Water Process Engineering 70: 106913 DOI: 10.1016/j.jwpe.2024.106913
- Elshaarawy, M.K., 2025b. Metaheuristic-driven CatBoost model for accurate seepage loss prediction in lined canals. Multiscale and Multidisciplinary Modeling, Experiments and Design 8 (5): 235 DOI: 10.1007/s41939-025-00800-8
- Elshaarawy, M.K., Armanuos, A.M., 2025a. Simulating the effectiveness of artificial recharge and cutoff walls for saltwater intrusion control with explainable ML and GUI deployment. CATENA 261: 109558 DOI: 10.1016/j.catena.2025.109558
- Elshaarawy, M.K., Armanuos, A.M., 2025b. Predicting seawater intrusion wedge length in coastal aquifers using hybrid gradient boosting techniques. Earth Science Informatics 18 (2): 243 DOI: 10.1007/s12145-025-01755-7
- Elshaarawy, M.K., Hamed AK. 2024. Stacked Ensemble Model for Optimized Prediction of Triangular Side Orifice Discharge Coefficient. Engineering Optimization DOI: 10.1080/0305215X.2024.2397431
- Elshaarawy, M.K., Zeleňáková, M., Armanuos, A.M., 2025. Hydraulic Performance Modeling of Inclined Double Cutoff Walls Beneath Hydraulic Structures Using Optimized Ensemble Machine Learning. Scientific Reports 15 (1): 27592 DOI: 10.1038/s41598-025-10990-3
- Eltarabily, M.G., Elshaarawy, M.K., Bali, K.M., Gabr, M.E., 2025. Predicting reference evapotranspiration in semi-arid regions using optimized machine learning models. Journal of Water and Climate Change DOI: 10.2166/wcc.2025.853
- Emiroglu, M.E., Agaccioglu, H. and Kaya, N., 2011. Discharging capacity of rectangular side weirs in straight open channels. Flow Measurement and Instrumentation, 22(4), pp.319-330. DOI: https://doi.org/10.1016/j.flowmeasinst.2011.04.003
- Emiroglu, M.E., Bilhan, O., Kisi, O., 2011b. Neural networks for estimation of discharge capacity of triangular labyrinth side-weir located on a straight channel. Expert Systems with Applications 38 (1): 867–874 DOI: 10.1016/j.eswa.2010.07.058
- Esmailzadeh, M., Heidarpour, M. and Eslamian, S.S., 2015. Flow characteristics of a sharp-crested side sluice gate. Journal of Irrigation and Drainage Engineering, 141(7), p.06014007. DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0000852
- Gharehbaghi, A., Ghasemlounia, R., Afaridegan, E., Haghiabi, A., Mandala, V., Azamathulla, H.M., Parsaie, A., 2023. A comparison of artificial intelligence approaches in predicting discharge coefficient of streamlined weirs. Journal of Hydroinformatics 25 (4): 1513–1530 DOI: 10.2166/hydro.2023.063
- Gharib, R., Heydari, M., Kardar, S., Shabanlou, S., 2020. Simulation of discharge coefficient of side weirs placed on convergent canals using modern self-adaptive extreme learning machine. Applied Water Science 10 (1): 50 DOI: 10.1007/s13201-019-1136-0
- Gill, M.A., 1987. Flow Through Side Slots. Journal of Environmental Engineering 113 (5): 1047–1057 DOI: 10.1061/(ASCE)0733-9372(1987)113:5(1047)
- Golbraikh, A., Tropsha, A., 2002. Beware of q2! Journal of Molecular Graphics and Modelling 20 (4): 269–276 DOI: 10.1016/S1093-3263(01)00123-1
- Hanche-Olsen, H., 2004. Buckingham’s pi-theorem. NTNU: http://www.math.ntnu.no/~hanche/notes/buckingham/buckingham-a4.pdf
- Hosny, M., Abdelhaleem, F.S., Elshenhab, A.M., Ibrahim, A., 2025. Prediction of discharge coefficient of submerged gates using a stacking ensemble model. Soft Computing 29 (3): 1911–1929 DOI: 10.1007/s00500-025-10518-x
- Hossein Zaji, A., Bonakdari, H., Karimi, S., 2015. Radial Basis Neural Network and Particle Swarm Optimization-based equations for predicting the discharge capacity of triangular labyrinth weirs. Flow Measurement and Instrumentation 45: 341–347 DOI: https://doi.org/10.1016/j.flowmeasinst.2015.08.002
- Hussain, A., Ahmad, Z., Asawa, G.L., 2010. Discharge characteristics of sharp-crested circular side orifices in open channels. Flow Measurement and Instrumentation 21 (3): 418–424 DOI: 10.1016/j.flowmeasinst.2010.06.005
- Hussain, A., Ahmad, Z., Asawa, G.L., 2011. Flow through sharp-crested rectangular side orifices under free flow condition in open channels. Agricultural Water Management 98 (10): 1536–1544 DOI: https://doi.org/10.1016/j.agwat.2011.05.004
- Hussain, A., Ahmad, Z., Ojha, C.S.P., 2014. Analysis of flow through lateral rectangular orifices in open channels. Flow Measurement and Instrumentation 36: 32–35 DOI: 10.1016/j.flowmeasinst.2014.02.002
- Hussain, A., Ahmad, Z., Ojha, C.S.P., 2016. Flow through lateral circular orifice under free and submerged flow conditions. Flow Measurement and Instrumentation 52: 57–66 DOI: 10.1016/j.flowmeasinst.2016.09.007
- Isleem, H.F., Elshaarawy, M.K., Hamed, A.K., 2024. Analysis of Flow Dynamics and Energy Dissipation in Piano Key and Labyrinth Weirs Using Computational Fluid Dynamics. Computational Fluid Dynamics - Analysis, Simulations, and Applications [Working Title] DOI: 10.5772/intechopen.1006332
- Ismael, A.A., Suleiman, S.J., Al-Nima, R.R.O., Al-Ansari, N., 2021. Predicting the discharge coefficient of oblique cylindrical weir using neural network techniques. Arabian Journal of Geosciences 14 (16): 1670 DOI: 10.1007/s12517-021-07911-9
- Jamei, M., Ahmadianfar, I., Chu, X. and Yaseen, Z.M., 2021. Estimation of triangular side orifice discharge coefficient under a free flow condition using data-driven models. Flow Measurement and Instrumentation, 77, p.101878. DOI: https://doi.org/10.1016/j.flowmeasinst.2020.101878
- Jamei, M., Ahmadianfar, I., Chu, X., Yaseen, Z.M., 2021. Estimation of triangular side orifice discharge coefficient under a free flow condition using data-driven models. Flow Measurement and Instrumentation 77: 101878 DOI: https://doi.org/10.1016/j.flowmeasinst.2020.101878
- Jamil, R., Aziz, H.A. and Murshed, M.F., 2023. Water loss prediction model for pipe leaks in water distribution networks laid on sloping terrains. Water Conserv. Manag., 7(2), pp.128-136. DOI: http://doi.org/10.26480/wcm.02.2023.128.136
- Karbasi, M., Jamei, M., Ahmadianfar, I., Asadi, A., 2021. Toward the accurate estimation of elliptical side orifice discharge coefficient applying two rigorous kernel-based data-intelligence paradigms. Scientific Reports 11 (1): 19784 DOI: 10.1038/s41598-021-99166-3
- Katlav, M., Ergen, F., 2025. Improved forecasting of the compressive strength of ultra-high-performance concrete (UHPC) via the CatBoost model optimized with different algorithms. Structural Concrete 26 (1): 212–235 DOI: 10.1002/suco.202400163
- Khoshbin, F., Bonakdari, H., Ashraf Talesh, S.H., Ebtehaj, I., Zaji, A.H., Azimi, H., 2016. Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs. Engineering Optimization 48 (6): 933–948 DOI: 10.1080/0305215X.2015.1071807
- Khosravinia, P., Nikpour, M.R., Kisi, O., Adnan, R.M., 2023. Predicting Discharge Coefficient of Triangular Side Orifice Using LSSVM Optimized by Gravity Search Algorithm. Water 15 (7): 1341 DOI: 10.3390/w15071341
- Luat, N-V., Han, S.W., Lee, K., 2021. Genetic algorithm hybridized with eXtreme gradient boosting to predict axial compressive capacity of CCFST columns. Composite Structures 278: 114733 DOI: https://doi.org/10.1016/j.compstruct.2021.114733
- Mahmodian, A.R., Rajabi, A., Izadbakhsh, M.A., Shabanlou, S., 2019. Evaluation of side orifices shape factor using the novel approach self-adaptive extreme learning machine. Modeling Earth Systems and Environment 5 (3): 925–935 DOI: 10.1007/s40808-019-00579-x
- Masoud, G., 2003. Flow through Side Sluice Gate. Journal of Irrigation and Drainage Engineering 129 (6): 458–463 DOI: 10.1061/(ASCE)0733-9437(2003)129:6(458)
- Megahed, K., Mahmoud, N.S., Abd-Rabou, S.E.M., 2023. Application of machine learning models in the capacity prediction of RCFST columns. Scientific Reports 13 (1): 20878 DOI: 10.1038/s41598-023-48044-1
- Moghadam, R.G., Yaghoubi, B., Rajabi, A., Shabanlou, S., Izadbakhsh, M.A., 2022. Evaluation of discharge coefficient of triangular side orifices by using regularized extreme learning machine. Applied Water Science 12 (7): 145 DOI: 10.1007/s13201-022-01665-9
- Norouzi, P., Rajabi, A., Izadbakhsh, M.A., Shabanlou, S., Yosefvand, F., Yaghoubi, B., 2020. A new non-tuned self-adaptive machine-learning approach for simulating the discharge coefficient of labyrinth weirs. Irrigation and Drainage 69 (3): 398–416 DOI: https://doi.org/10.1002/ird.2423
- Ojha, C.S.P., Subbaiah, D., 1997. Analysis of Flow through Lateral Slot. Journal of Irrigation and Drainage Engineering 123 (5): 402–405 DOI: 10.1061/(ASCE)0733-9437(1997)123:5(402)
- Parsaie, A., Azamathulla, H.M., Haghiabi, A.H., 2017a. Prediction of discharge coefficient of cylindrical weir—Gate using GMDH-PSO. ISH J. Hydraul. Eng. 24 DOI: 10.1080/09715010.2017.1372226
- Parsaie, A., Haghiabi, A.H., Saneie, M., Torabi, H., 2017b. Predication of discharge coefficient of cylindrical weir-gate using adaptive neuro fuzzy inference systems (ANFIS). Frontiers of Structural and Civil Engineering 11 (1): 111–122 DOI: 10.1007/s11709-016-0354-x
- Ramamurthy, A.S., Tim, U.S., Rao, M.V.J., 1987. Weir-Orifice Units for Uniform Flow Distribution. Journal of Environmental Engineering 113 (1): 155–166 DOI: 10.1061/(ASCE)0733-9372(1987)113:1(155)
- Ramamurthy, A.S., Tim, U.S., Sarraf, S., 1986a. Rectangular Lateral Orifices in Open Channels. Journal of Environmental Engineering 112 (2): 292–300 DOI: 10.1061/(ASCE)0733-9372(1986)112:2(292)
- Ramamurthy, A.S., Tim, U.S., Sarraf, S., 1986b. Rectangular Lateral Orifices in Open Channels. Journal of Environmental Engineering 112 (2): 292–300 DOI: 10.1061/(ASCE)0733-9372(1986)112:2(292)
- Razmi, M., Saneie, M., Basirat, S., 2022. Estimating discharge coefficient of side weirs in trapezoidal and rectangular flumes using outlier robust extreme learning machine. Applied Water Science 12 (8): 176 DOI: 10.1007/s13201-022-01698-0
- Reza, A., Ahmad, M., Mohammad, R., Izadbakhsh, A., Shabanlou, S., 2019. Evaluation of side orifices shape factor using the novel approach self-adaptive extreme learning machine. Model. Earth Syst. Environ. 5 DOI: 10.1007/s40808-019-00579-x
- Saadatnejadgharahassanlou, H., Gharehbaghi, A., Mehdizadeh, S., Kaya, B., Behmanesh, J., 2017. Experimental investigation of discharge coefficient over novel kind of sharp-crested V-notch weir. Flow Measurement and Instrumentation 54: 236–242 DOI: https://doi.org/10.1016/j.flowmeasinst.2017.02.008
- Saadatnejadgharahassanlou, H., Zeynali, R.I., Gharehbaghi, A., Mehdizadeh, S., Vaheddoost, B., 2020. Three-dimensional flow simulation over a sharp-crested V-Notch weir. Flow Measurement and Instrumentation 71: 101684 DOI: https://doi.org/10.1016/j.flowmeasinst.2019.101684
- Salmasi, F., 2021. Effect of downstream apron elevation and downstream submergence in discharge coefficient of ogee weir. ISH Journal of Hydraulic Engineering 27 (4): 375–384 DOI: 10.1080/09715010.2018.1556125
- Seyedian, S.M., Kisi, O., 2024. Uncertainty analysis of discharge coefficient predicted for rectangular side weir using machine learning methods. Journal of Hydrology and Hydromechanics 72 (1): 113–130 DOI: 10.2478/johh-2023-0043
- Shang, L., Isleem, H.F., Alsaadawi, M.M., 2025. Deep learning-based modelling of polyvinyl chloride tube-confined concrete columns under different load eccentricities. Engineering Applications of Artificial Intelligence 145: 110217 DOI: 10.1016/j.engappai.2025.110217
- Shen, F., Jha, I., Isleem, H.F., Almoghayer, W.J.K., Khishe, M., Elshaarawy, M.K., 2025. Advanced predictive machine and deep learning models for round-ended CFST column. Scientific Reports 15 (1): 6194 DOI: 10.1038/s41598-025-90648-2
- Swamee, P.K., Pathak, S.K. and Ali, M.S., 1993. Analysis of rectangular side sluice gate. Journal of irrigation and drainage engineering, 119(6), pp.1026-1035. DOI: https://doi.org/10.1061/(ASCE)0733-9437(1993)119:6(1026)
- Swamee, P.K., Pathak, S.K., Mansoor, T., Ojha, C.S.P., 2000. Discharge Characteristics of Skew Sluice Gates. Journal of Irrigation and Drainage Engineering 126 (5): 328–334 DOI: 10.1061/(ASCE)0733-9437(2000)126:5(328)
- Theerthagiri, P., 2025. Liver disease classification using histogram-based gradient boosting classification tree with feature selection algorithm. Biomedical Signal Processing and Control 100: 107102 DOI: 10.1016/j.bspc.2024.107102
- Vatankhah, A.R., 2016. Discussion of “Stage-Discharge Models for Concrete Orifices: Impact on Estimating Detention Basin Drawdown Time” by W. T. Barlow and D. Brandes. Journal of Irrigation and Drainage Engineering 142 (11): 7016016 DOI: 10.1061/(ASCE)IR.1943-4774.0001102
- Vatankhah, A.R., Mirnia, S.H., 2018. Predicting discharge coefficient of triangular side orifice under free flow conditions. J. Irrig. Drain. Eng. 144 DOI: 10.1061/(ASCE)IR.1943-4774.0001343
- Vatankhah, A.R., Rafeifar, F., 2020. Analytical and experimental study of flow through elliptical side orifices. Flow Measurement and Instrumentation 72: 101712 DOI: 10.1016/j.flowmeasinst.2020.101712
- Zarei, S., Yosefvand, F., Shabanlou, S., 2020. Discharge coefficient of side weirs on converging channels using extreme learning machine modeling method. Measurement 152 DOI: 10.1016/j.measurement.2019.107321
- Zhang, J., Almoghayer, W.J.K., Isleem, H.F,, Negi, B.S., Mahmoud, H.A., Elshaarawy, M.K., 2025. Machine learning for the prediction of the axial load-carrying capacity of FRP reinforced hollow concrete column. Structural Concrete DOI: https://doi.org/10.1002/suco.202400886