Have a personal or library account? Click to login
Interpretable Stacked Gradient-Boosting Models for Predicting the Discharge Coefficient of Elliptical Side Orifices Cover

Interpretable Stacked Gradient-Boosting Models for Predicting the Discharge Coefficient of Elliptical Side Orifices

Open Access
|Dec 2025

References

  1. Afaridegan, E., Amanian, N., Goodarzi, M.R., 2025a. Hybrid Machine Learning Models for Discharge Coefficient Prediction in Hydrofoil-Crested Stepped Spillways. Archives of Computational Methods in Engineering 32 (7): 4413–4445 DOI: 10.1007/s11831-025-10274-z
  2. Afaridegan, E., Fatahi-Alkouhi, R., Khalilian, S., Moradi-Eshgafti, A., Amanian, N., 2025b. Enhanced energy dissipation prediction in modified semi-cylindrical weirs using machine learning techniques. Modeling Earth Systems and Environment 11 (2): 131 DOI: 10.1007/s40808-025-02317-y
  3. Armanuos, A.M., Elshaarawy, M.K., 2025. Estimating saltwater wedge length in sloping coastal aquifers using explainable machine learning models. Earth Science Informatics 18 (2): 405 DOI: 10.1007/s12145-025-01900-2
  4. Armanuos, A.M., Zeleňáková, M., Elshaarawy, M.K., 2025. Explainable ML modeling of saltwater intrusion control with underground barriers in coastal sloping aquifers. Scientific Reports 15 (1): 29281 DOI: 10.1038/s41598-025-12830-w
  5. Asadi, M.J., Shabanlou, S., Najarchi, M., Najafizadeh, M.M., 2021. A Hybrid Intelligent Model and Computational Fluid Dynamics to Simulate Discharge Coefficient of Circular Side Orifices. Iranian Journal of Science and Technology, Transactions of Civil Engineering 45 (2): 985–1010 DOI: 10.1007/s40996-020-00390-0
  6. Asgharzadeh-Bonab, A., Bijanvand, S., Parsaie, A., Afaridegan, E., 2025. Machine learning-based estimation of discharge coefficient for semicircular labyrinth weirs. Scientific Reports 15 (1): 33002 DOI: 10.1038/s41598-025-18230-4
  7. Azimi, H., Bonakdari, H., Ebtehaj, I., 2019. Design of radial basis function-based support vector regression in predicting the discharge coefficient of a side weir in a trapezoidal channel. Applied Water Science 9: 1–12 DOI:10.1007/s13201-019-0961-5
  8. Azimi, H., Bonakdari, H., Ebtehaj, I., 2021. Gene expression programming-based approach for predicting the roller length of a hydraulic jump on a rough bed. ISH Journal of Hydraulic Engineering 27 (sup1): 77–87 DOI: 10.1080/09715010.2019.1579058
  9. Azimi, H., Shabanlou, S., Ebtehaj, I., Bonakdari, H., Kardar, S., 2017. Combination of Computational Fluid Dynamics, Adaptive Neuro-Fuzzy Inference System, and Genetic Algorithm for Predicting Discharge Coefficient of Rectangular Side Orifices. Journal of Irrigation and Drainage Engineering 143 (7): 4017015 DOI: 10.1061/(ASCE)IR.1943-4774.0001190
  10. Barzegar, R., Razzagh, S., Quilty, J., Adamowski, J., Kheyrollah Pour, H., Booij, M.J., 2021. Improving GALDIT-based groundwater vulnerability predictive mapping using coupled resampling algorithms and machine learning models. Journal of Hydrology 598 (February): 126370 DOI: 10.1016/j.jhydrol.2021.126370
  11. Beskopylny, A.N., Stel’makh, S.A., Shcherban’, E.M., Mailyan, L.R., Meskhi, B., Razveeva, I., Chernil’nik, A., Beskopylny, N., 2022. Concrete Strength Prediction Using Machine Learning Methods CatBoost, k-Nearest Neighbors, Support Vector Regression. Applied Sciences 12 (21): 10864 DOI: 10.3390/app122110864
  12. Bijanvand, S., Asgharzadeh-Bonab, A., Parsaie, A., Afaridegan, E., 2025. Enhanced prediction of discharge coefficients in Harmonic Plan Circular Weirs using advanced machine learning and ensemble techniques. Flow Measurement and Instrumentation 102: 102812 DOI: https://doi.org/10.1016/j.flowmeasinst.2025.102812
  13. Bos, M.G., 1989. Discharge measurement structures.
  14. Chanson, H., 2000, December. A review of accidents and failures of stepped spillways and weirs. In Proceedings of the Institution of Civil Engineers-Water and Maritime Engineering (Vol. 142, No. 4, pp. 177-188). Thomas Telford Ltd. doi: https://doi.org/10.1680/wame.2000.142.4.177.
  15. Das, P., Kashem, A., Hasan, I., Islam, M., 2024. A comparative study of machine learning models for construction costs prediction with natural gradient boosting algorithm and SHAP analysis. Asian Journal of Civil Engineering 25 (4): 3301–3316 DOI: 10.1007/s42107-023-00980-z
  16. Davies, L. and Gather, U., 1993. The identification of multiple outliers. Journal of the American Statistical Association, 88(423), pp.782-792. https://doi.org/10.1080/01621459.1993.10476339
  17. Deng, Y., Zhang, D., Zhang, D., Wu, J., Liu, Y., 2023. A hybrid ensemble machine learning model for discharge coefficient prediction of side orifices with different shapes. Flow Measurement and Instrumentation 91: 102372 DOI: 10.1016/j.flowmeasinst.2023.102372
  18. Ding, W., Jia, S., 2023. An Improved Equation for the Bearing Capacity of Concrete-Filled Steel Tube Concrete Short Columns Based on GPR. Buildings 13 (5): 1226 DOI: 10.3390/buildings13051226
  19. Dissanayake, C.K. and Farris, J.A., 2014. Assembly lines of the future: a literature review of research articles from 2000-2014. In Proceedings of the American Society for Engineering Management 2014 International Annual Conference (pp. 1-10).
  20. Dursun, O.F., Kaya, N. and Firat, M., 2012. Estimating discharge coefficient of semi-elliptical side weir using ANFIS. Journal of hydrology, 426, pp.55-62. DOI: https://doi.org/10.1016/j.jhydrol.2012.01.010
  21. Ebtehaj, I., Bonakdari, H., Khoshbin, F., Azimi, H., 2015a. Pareto genetic design of group method of data handling type neural network for prediction discharge coefficient in rectangular side orifices. Flow Measurement and Instrumentation 41: 67–74 DOI: 10.1016/j.flowmeasinst.2014.10.016
  22. Ebtehaj, I., Bonakdari, H., Zaji, A.H., Azimi, H., Khoshbin, F., 2015b. GMDH-type neural network approach for modeling the discharge coefficient of rectangular sharp-crested side weirs. Engineering Science and Technology, an International Journal 18 (4): 746–757 DOI: 10.1016/j.jestch.2015.04.012
  23. Elshaarawy, M.K., 2025a. Stacked-based hybrid gradient boosting models for estimating seepage from lined canals. Journal of Water Process Engineering 70: 106913 DOI: 10.1016/j.jwpe.2024.106913
  24. Elshaarawy, M.K., 2025b. Metaheuristic-driven CatBoost model for accurate seepage loss prediction in lined canals. Multiscale and Multidisciplinary Modeling, Experiments and Design 8 (5): 235 DOI: 10.1007/s41939-025-00800-8
  25. Elshaarawy, M.K., Armanuos, A.M., 2025a. Simulating the effectiveness of artificial recharge and cutoff walls for saltwater intrusion control with explainable ML and GUI deployment. CATENA 261: 109558 DOI: 10.1016/j.catena.2025.109558
  26. Elshaarawy, M.K., Armanuos, A.M., 2025b. Predicting seawater intrusion wedge length in coastal aquifers using hybrid gradient boosting techniques. Earth Science Informatics 18 (2): 243 DOI: 10.1007/s12145-025-01755-7
  27. Elshaarawy, M.K., Hamed AK. 2024. Stacked Ensemble Model for Optimized Prediction of Triangular Side Orifice Discharge Coefficient. Engineering Optimization DOI: 10.1080/0305215X.2024.2397431
  28. Elshaarawy, M.K., Zeleňáková, M., Armanuos, A.M., 2025. Hydraulic Performance Modeling of Inclined Double Cutoff Walls Beneath Hydraulic Structures Using Optimized Ensemble Machine Learning. Scientific Reports 15 (1): 27592 DOI: 10.1038/s41598-025-10990-3
  29. Eltarabily, M.G., Elshaarawy, M.K., Bali, K.M., Gabr, M.E., 2025. Predicting reference evapotranspiration in semi-arid regions using optimized machine learning models. Journal of Water and Climate Change DOI: 10.2166/wcc.2025.853
  30. Emiroglu, M.E., Agaccioglu, H. and Kaya, N., 2011. Discharging capacity of rectangular side weirs in straight open channels. Flow Measurement and Instrumentation, 22(4), pp.319-330. DOI: https://doi.org/10.1016/j.flowmeasinst.2011.04.003
  31. Emiroglu, M.E., Bilhan, O., Kisi, O., 2011b. Neural networks for estimation of discharge capacity of triangular labyrinth side-weir located on a straight channel. Expert Systems with Applications 38 (1): 867–874 DOI: 10.1016/j.eswa.2010.07.058
  32. Esmailzadeh, M., Heidarpour, M. and Eslamian, S.S., 2015. Flow characteristics of a sharp-crested side sluice gate. Journal of Irrigation and Drainage Engineering, 141(7), p.06014007. DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0000852
  33. Gharehbaghi, A., Ghasemlounia, R., Afaridegan, E., Haghiabi, A., Mandala, V., Azamathulla, H.M., Parsaie, A., 2023. A comparison of artificial intelligence approaches in predicting discharge coefficient of streamlined weirs. Journal of Hydroinformatics 25 (4): 1513–1530 DOI: 10.2166/hydro.2023.063
  34. Gharib, R., Heydari, M., Kardar, S., Shabanlou, S., 2020. Simulation of discharge coefficient of side weirs placed on convergent canals using modern self-adaptive extreme learning machine. Applied Water Science 10 (1): 50 DOI: 10.1007/s13201-019-1136-0
  35. Gill, M.A., 1987. Flow Through Side Slots. Journal of Environmental Engineering 113 (5): 1047–1057 DOI: 10.1061/(ASCE)0733-9372(1987)113:5(1047)
  36. Golbraikh, A., Tropsha, A., 2002. Beware of q2! Journal of Molecular Graphics and Modelling 20 (4): 269–276 DOI: 10.1016/S1093-3263(01)00123-1
  37. Hanche-Olsen, H., 2004. Buckingham’s pi-theorem. NTNU: http://www.math.ntnu.no/~hanche/notes/buckingham/buckingham-a4.pdf
  38. Hosny, M., Abdelhaleem, F.S., Elshenhab, A.M., Ibrahim, A., 2025. Prediction of discharge coefficient of submerged gates using a stacking ensemble model. Soft Computing 29 (3): 1911–1929 DOI: 10.1007/s00500-025-10518-x
  39. Hossein Zaji, A., Bonakdari, H., Karimi, S., 2015. Radial Basis Neural Network and Particle Swarm Optimization-based equations for predicting the discharge capacity of triangular labyrinth weirs. Flow Measurement and Instrumentation 45: 341–347 DOI: https://doi.org/10.1016/j.flowmeasinst.2015.08.002
  40. Hussain, A., Ahmad, Z., Asawa, G.L., 2010. Discharge characteristics of sharp-crested circular side orifices in open channels. Flow Measurement and Instrumentation 21 (3): 418–424 DOI: 10.1016/j.flowmeasinst.2010.06.005
  41. Hussain, A., Ahmad, Z., Asawa, G.L., 2011. Flow through sharp-crested rectangular side orifices under free flow condition in open channels. Agricultural Water Management 98 (10): 1536–1544 DOI: https://doi.org/10.1016/j.agwat.2011.05.004
  42. Hussain, A., Ahmad, Z., Ojha, C.S.P., 2014. Analysis of flow through lateral rectangular orifices in open channels. Flow Measurement and Instrumentation 36: 32–35 DOI: 10.1016/j.flowmeasinst.2014.02.002
  43. Hussain, A., Ahmad, Z., Ojha, C.S.P., 2016. Flow through lateral circular orifice under free and submerged flow conditions. Flow Measurement and Instrumentation 52: 57–66 DOI: 10.1016/j.flowmeasinst.2016.09.007
  44. Isleem, H.F., Elshaarawy, M.K., Hamed, A.K., 2024. Analysis of Flow Dynamics and Energy Dissipation in Piano Key and Labyrinth Weirs Using Computational Fluid Dynamics. Computational Fluid Dynamics - Analysis, Simulations, and Applications [Working Title] DOI: 10.5772/intechopen.1006332
  45. Ismael, A.A., Suleiman, S.J., Al-Nima, R.R.O., Al-Ansari, N., 2021. Predicting the discharge coefficient of oblique cylindrical weir using neural network techniques. Arabian Journal of Geosciences 14 (16): 1670 DOI: 10.1007/s12517-021-07911-9
  46. Jamei, M., Ahmadianfar, I., Chu, X. and Yaseen, Z.M., 2021. Estimation of triangular side orifice discharge coefficient under a free flow condition using data-driven models. Flow Measurement and Instrumentation, 77, p.101878. DOI: https://doi.org/10.1016/j.flowmeasinst.2020.101878
  47. Jamei, M., Ahmadianfar, I., Chu, X., Yaseen, Z.M., 2021. Estimation of triangular side orifice discharge coefficient under a free flow condition using data-driven models. Flow Measurement and Instrumentation 77: 101878 DOI: https://doi.org/10.1016/j.flowmeasinst.2020.101878
  48. Jamil, R., Aziz, H.A. and Murshed, M.F., 2023. Water loss prediction model for pipe leaks in water distribution networks laid on sloping terrains. Water Conserv. Manag., 7(2), pp.128-136. DOI: http://doi.org/10.26480/wcm.02.2023.128.136
  49. Karbasi, M., Jamei, M., Ahmadianfar, I., Asadi, A., 2021. Toward the accurate estimation of elliptical side orifice discharge coefficient applying two rigorous kernel-based data-intelligence paradigms. Scientific Reports 11 (1): 19784 DOI: 10.1038/s41598-021-99166-3
  50. Katlav, M., Ergen, F., 2025. Improved forecasting of the compressive strength of ultra-high-performance concrete (UHPC) via the CatBoost model optimized with different algorithms. Structural Concrete 26 (1): 212–235 DOI: 10.1002/suco.202400163
  51. Khoshbin, F., Bonakdari, H., Ashraf Talesh, S.H., Ebtehaj, I., Zaji, A.H., Azimi, H., 2016. Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs. Engineering Optimization 48 (6): 933–948 DOI: 10.1080/0305215X.2015.1071807
  52. Khosravinia, P., Nikpour, M.R., Kisi, O., Adnan, R.M., 2023. Predicting Discharge Coefficient of Triangular Side Orifice Using LSSVM Optimized by Gravity Search Algorithm. Water 15 (7): 1341 DOI: 10.3390/w15071341
  53. Luat, N-V., Han, S.W., Lee, K., 2021. Genetic algorithm hybridized with eXtreme gradient boosting to predict axial compressive capacity of CCFST columns. Composite Structures 278: 114733 DOI: https://doi.org/10.1016/j.compstruct.2021.114733
  54. Mahmodian, A.R., Rajabi, A., Izadbakhsh, M.A., Shabanlou, S., 2019. Evaluation of side orifices shape factor using the novel approach self-adaptive extreme learning machine. Modeling Earth Systems and Environment 5 (3): 925–935 DOI: 10.1007/s40808-019-00579-x
  55. Masoud, G., 2003. Flow through Side Sluice Gate. Journal of Irrigation and Drainage Engineering 129 (6): 458–463 DOI: 10.1061/(ASCE)0733-9437(2003)129:6(458)
  56. Megahed, K., Mahmoud, N.S., Abd-Rabou, S.E.M., 2023. Application of machine learning models in the capacity prediction of RCFST columns. Scientific Reports 13 (1): 20878 DOI: 10.1038/s41598-023-48044-1
  57. Moghadam, R.G., Yaghoubi, B., Rajabi, A., Shabanlou, S., Izadbakhsh, M.A., 2022. Evaluation of discharge coefficient of triangular side orifices by using regularized extreme learning machine. Applied Water Science 12 (7): 145 DOI: 10.1007/s13201-022-01665-9
  58. Norouzi, P., Rajabi, A., Izadbakhsh, M.A., Shabanlou, S., Yosefvand, F., Yaghoubi, B., 2020. A new non-tuned self-adaptive machine-learning approach for simulating the discharge coefficient of labyrinth weirs. Irrigation and Drainage 69 (3): 398–416 DOI: https://doi.org/10.1002/ird.2423
  59. Ojha, C.S.P., Subbaiah, D., 1997. Analysis of Flow through Lateral Slot. Journal of Irrigation and Drainage Engineering 123 (5): 402–405 DOI: 10.1061/(ASCE)0733-9437(1997)123:5(402)
  60. Parsaie, A., Azamathulla, H.M., Haghiabi, A.H., 2017a. Prediction of discharge coefficient of cylindrical weir—Gate using GMDH-PSO. ISH J. Hydraul. Eng. 24 DOI: 10.1080/09715010.2017.1372226
  61. Parsaie, A., Haghiabi, A.H., Saneie, M., Torabi, H., 2017b. Predication of discharge coefficient of cylindrical weir-gate using adaptive neuro fuzzy inference systems (ANFIS). Frontiers of Structural and Civil Engineering 11 (1): 111–122 DOI: 10.1007/s11709-016-0354-x
  62. Ramamurthy, A.S., Tim, U.S., Rao, M.V.J., 1987. Weir-Orifice Units for Uniform Flow Distribution. Journal of Environmental Engineering 113 (1): 155–166 DOI: 10.1061/(ASCE)0733-9372(1987)113:1(155)
  63. Ramamurthy, A.S., Tim, U.S., Sarraf, S., 1986a. Rectangular Lateral Orifices in Open Channels. Journal of Environmental Engineering 112 (2): 292–300 DOI: 10.1061/(ASCE)0733-9372(1986)112:2(292)
  64. Ramamurthy, A.S., Tim, U.S., Sarraf, S., 1986b. Rectangular Lateral Orifices in Open Channels. Journal of Environmental Engineering 112 (2): 292–300 DOI: 10.1061/(ASCE)0733-9372(1986)112:2(292)
  65. Razmi, M., Saneie, M., Basirat, S., 2022. Estimating discharge coefficient of side weirs in trapezoidal and rectangular flumes using outlier robust extreme learning machine. Applied Water Science 12 (8): 176 DOI: 10.1007/s13201-022-01698-0
  66. Reza, A., Ahmad, M., Mohammad, R., Izadbakhsh, A., Shabanlou, S., 2019. Evaluation of side orifices shape factor using the novel approach self-adaptive extreme learning machine. Model. Earth Syst. Environ. 5 DOI: 10.1007/s40808-019-00579-x
  67. Saadatnejadgharahassanlou, H., Gharehbaghi, A., Mehdizadeh, S., Kaya, B., Behmanesh, J., 2017. Experimental investigation of discharge coefficient over novel kind of sharp-crested V-notch weir. Flow Measurement and Instrumentation 54: 236–242 DOI: https://doi.org/10.1016/j.flowmeasinst.2017.02.008
  68. Saadatnejadgharahassanlou, H., Zeynali, R.I., Gharehbaghi, A., Mehdizadeh, S., Vaheddoost, B., 2020. Three-dimensional flow simulation over a sharp-crested V-Notch weir. Flow Measurement and Instrumentation 71: 101684 DOI: https://doi.org/10.1016/j.flowmeasinst.2019.101684
  69. Salmasi, F., 2021. Effect of downstream apron elevation and downstream submergence in discharge coefficient of ogee weir. ISH Journal of Hydraulic Engineering 27 (4): 375–384 DOI: 10.1080/09715010.2018.1556125
  70. Seyedian, S.M., Kisi, O., 2024. Uncertainty analysis of discharge coefficient predicted for rectangular side weir using machine learning methods. Journal of Hydrology and Hydromechanics 72 (1): 113–130 DOI: 10.2478/johh-2023-0043
  71. Shang, L., Isleem, H.F., Alsaadawi, M.M., 2025. Deep learning-based modelling of polyvinyl chloride tube-confined concrete columns under different load eccentricities. Engineering Applications of Artificial Intelligence 145: 110217 DOI: 10.1016/j.engappai.2025.110217
  72. Shen, F., Jha, I., Isleem, H.F., Almoghayer, W.J.K., Khishe, M., Elshaarawy, M.K., 2025. Advanced predictive machine and deep learning models for round-ended CFST column. Scientific Reports 15 (1): 6194 DOI: 10.1038/s41598-025-90648-2
  73. Swamee, P.K., Pathak, S.K. and Ali, M.S., 1993. Analysis of rectangular side sluice gate. Journal of irrigation and drainage engineering, 119(6), pp.1026-1035. DOI: https://doi.org/10.1061/(ASCE)0733-9437(1993)119:6(1026)
  74. Swamee, P.K., Pathak, S.K., Mansoor, T., Ojha, C.S.P., 2000. Discharge Characteristics of Skew Sluice Gates. Journal of Irrigation and Drainage Engineering 126 (5): 328–334 DOI: 10.1061/(ASCE)0733-9437(2000)126:5(328)
  75. Theerthagiri, P., 2025. Liver disease classification using histogram-based gradient boosting classification tree with feature selection algorithm. Biomedical Signal Processing and Control 100: 107102 DOI: 10.1016/j.bspc.2024.107102
  76. Vatankhah, A.R., 2016. Discussion of “Stage-Discharge Models for Concrete Orifices: Impact on Estimating Detention Basin Drawdown Time” by W. T. Barlow and D. Brandes. Journal of Irrigation and Drainage Engineering 142 (11): 7016016 DOI: 10.1061/(ASCE)IR.1943-4774.0001102
  77. Vatankhah, A.R., Mirnia, S.H., 2018. Predicting discharge coefficient of triangular side orifice under free flow conditions. J. Irrig. Drain. Eng. 144 DOI: 10.1061/(ASCE)IR.1943-4774.0001343
  78. Vatankhah, A.R., Rafeifar, F., 2020. Analytical and experimental study of flow through elliptical side orifices. Flow Measurement and Instrumentation 72: 101712 DOI: 10.1016/j.flowmeasinst.2020.101712
  79. Zarei, S., Yosefvand, F., Shabanlou, S., 2020. Discharge coefficient of side weirs on converging channels using extreme learning machine modeling method. Measurement 152 DOI: 10.1016/j.measurement.2019.107321
  80. Zhang, J., Almoghayer, W.J.K., Isleem, H.F,, Negi, B.S., Mahmoud, H.A., Elshaarawy, M.K., 2025. Machine learning for the prediction of the axial load-carrying capacity of FRP reinforced hollow concrete column. Structural Concrete DOI: https://doi.org/10.1002/suco.202400886
DOI: https://doi.org/10.2478/johh-2025-0029 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 378 - 395
Submitted on: Sep 10, 2025
Accepted on: Nov 25, 2025
Published on: Dec 18, 2025
Published by: Slovak Academy of Sciences, Institute of Hydrology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Nanes Hassanin Elmasry, Mohamed Kamel Elshaarawy, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.