References
- Basarin, B., Lukić, T., Pavić, D., Wilby, R.L., 2016. Trends and multi-annual variability of water temperatures in the river Danube, Serbia. Hydrological Processes. https://doi.org/10.1002/hyp.10863
- Bertola, M., Viglione, A., Hall, J., Blöschl, G., 2019. Flood trends in Europe: are changes in small and big floods different? Hydrology and Earth System Sciences, 24(4), 1805–1822.
- Bezak, N., Brilly, M., Šraj, M., 2016. Flood frequency analyses, statistical trends and seasonality analyses of discharge data: A case study of the Litija station on the Sava River. Journal of Flood Risk Management, 9(2), 154–168. https://doi.org/10.1111/jfr3.12118
- Bouwer, L., Vermaat, J.E., Aerts, J.C.J.H., 2008. Regional sensitivities of mean and peak river discharge to climate variability in Europe. Journal of Geophysical Research, 113(D19). https://doi.org/https://doi.org/10.1029/2008JD010301
- Cherenkova, E.A., Sidorova, M.V., 2021. On the Impact of Insufficient Atmospheric Moistening on the Low Annual Discharge of Large Rivers in European Russia. Water Resources, 48, 351–360. https://doi.org/https://doi.org/10.1134/S0097807821030064
- Coles, S., 2001. An Introduction to Statistical Modeling of Extreme Values. Springer.
- Copernicus Climate Change Service, 2022. River Discharge. https://climate.copernicus.eu/esotc/2022/river-discharge
- Copernicus Climate Change Service, 2024. February 2024 was globally the warmest on record – Global Sea Surface Temperatures at record high. https://climate.copernicus.eu/copernicus-february-2024-was-globally-warmest-record-global-sea-surface-temperatures-record-high
- Dolinaj, D., Leščešen, I., Pantelić, M., Urošev, M., Joksimović, D.M., 2019. Danube river discharge at Bezdan gauging station (Serbia) and its correlation with atmospheric circulation patterns. Geographica Pannonica, 23(1), 14–22. https://doi.org/10.5937/gp23-18514
- Donegan, S., Murphy, C., Harrigan, S., Broderick, C., Foran Quinn, D., Golian, S., Knight, J., Matthews, T., Prudhomme, C., Scaife, A.A., Stringer, N., Wilby, R.L. 2021. Conditioning ensemble streamflow prediction with the North Atlantic Oscillation improves skill at longer lead times, Hydrol. Earth Syst. Sci., 25, 4159–4183. https://doi.org/10.5194/hess-25-4159-2021
- Gardini, A., 2023. Functional and variables selection in extreme value models for regional flood frequency analysis. Environmental and Ecological Statistics, 30, 715 - 739. https://doi.org/10.1007/s10651-023-00581-8
- Gilleland, E., Katz, R.W., 2016. ExtRemes 2.0: An extreme value analysis package in R. Journal of Statistical Software, 72(8). https://doi.org/10.18637/jss.v072.i08
- Gnjato, S., Popov, T., Ivanišević, M., Trbić, G., 2023. Long-term streamflow trends in Bosnia and Herzegovina (BH). Environmental Earth Sciences, 82(14), 1–17. https://doi.org/10.1007/s12665-023-11040-9
- Hannaford, J., Buys, G., Stahl, K., Tallaksen, L.M., 2013. The influence of decadal-scale variability on trends in long European streamflow records, Hydrology and Earth System Sciences, 17, 2717–2733. https://doi.org/10.5194/hess-17-2717-2013
- Higashiano, M., Stefan, G.H., 2019. Variability and change of precipitation and flood discharge in a Japanese river basin. Journal of Hydrology Regional Studies, 21, 68–79. https://doi.org/https://doi.org/10.1016/j.ejrh.2018.12.003
- ICPDR., 2018. Danube climate adaptation study.
- Ionita, M., Tallaksen, L.M., Kingston, D., Stagge, J., Laaha, G., Van Lanen, H., Chelcea, S.M., Haslinger, K., 2016. The European 2015 drought from a climatological perspective. Hydrology and Earth System Sciences Discussions. 2016. 1-32. 10.5194/hess-2016-218
- Jalón-Rojas, I., Castelle, B., 2021. Climate Control of Multidecadal Variability in River Discharge and Precipitation in Western Europe. Water (Switzerland), 13(3). https://doi.org/https://doi.org/10.3390/w13030257
- Jánosi, I.M., Bíró, T., Lakatos, B.O., Gallas, J.A.C., Szöllősi-Nagy, A., 2023. ChangingWater Cycle under aWarming Climate: Tendencies in the Carpathian Basin. Climate, 11, 118. https://doi.org/10.3390/cli11060118
- Katipoğlu, O., Sarıgöl, M., 2023. Combining Machine Learning Algorithms with Empirical Mode Decomposition and Discrete Wavelet Transform for Monthly Peak Discharge Prediction. Polish Journal of Environmental Studies, 32(4), 3161–3173. https://doi.org/https://doi.org/10.15244/pjoes/161515
- Katz, R.W., Parlange, M.B., Naveau, P., 2002. Statistics of extremes in hydrology. Advances in Water Resources, 25(8–12), 1287–1304. https://doi.org/10.1016/S0309-1708(02)00056-8
- Kingston, D.G., Todd, M.C., Taylor, R.G., Thompson, J.R., Arnell, N.W., 2009. Uncertainty in the estimation of potential evapotranspiration under climate change. Geophysical Research Letters, 36(20). https://doi.org/https://doi.org/10.1029/2009GL040267
- Knippertz, P., Ulbrich, U., Marques, F., Corte-Real, J., 2003. Decadal changes in the link between El Nino and spring-time North Atlantic Oscillation and European-North African rainfall. Int J Climatol 23:1293–1311. https://doi.org/10.1002/joc.944
- Leščešen, I., Dolinaj, D., 2019. Regional flood frequency analysis of the Pannonian Basin. Water, 11(2). https://doi.org/10.3390/w11020193
- Leščešen, I., Šraj, M., Basarin, B., Pavić, D., Mesaroš, M., Mudelsee, M., 2022. Regional Flood Frequency Analysis of the Sava River in South-Eastern Europe. Sustainability, 14(15). https://doi.org/10.3390/su14159282
- Leščešen, I., Gnjato, S., Galinović, I., Basarin, B., 2024. Hydrological drought assessment of the Sava River basin in South-Eastern Europe. Journal of Water and Climate Change. 15 (8): 3902–3918. doi: https://doi.org/10.2166/wcc.2024.157
- Leščešen, I., Šraj, M., Pantelić, M., Dolinaj, D., 2022. Assessing the impact of climate on annual and seasonal discharges at the Sremska Mitrovica station on the Sava River, Serbia. Water Supply, 22(1), 195–207. https://doi.org/10.2166/ws.2021.277
- Li, R., Xu, G., 2023. Assessing the impacts of reservoirs on downstream hydrological frequency based on a general rainfall-reservoir index. Front. Earth Sci. 11:1204640. doi: 10.3389/feart.2023.1204640
- Lilienthal, J., Zanger, L., Bücher, A., Fried, R., 2022. A note on statistical tests for homogeneities in multivariate extreme value models for block maxima. Environmetrics, 33(7), 1–21. https://doi.org/10.1002/env.2746
- Liu, Q., Bader, J., Jungclaus, J.H., Matei, D., 2025. More extreme summertime North Atlantic Oscillation under climate change. Commun Earth Environ 6, 474. https://doi.org/10.1038/s43247-025-02422-x
- Lorenzo-Lacruz, J., Morán-Tejeda, E., Vicente-Serrano, S.M., Hannaford, J., García, C., Peña-Angulo, D., Murphy, C., 2022. Streamflow frequency changes across western Europe and interactions with North Atlantic atmospheric circulation patterns. Global and Planetary Change, Volume 212. 103797. https://doi.org/10.1016/j.gloplacha.2022.103797
- Mares, C., Dobrica, V., Mares, I., Demetrescu, C., 2025. Testing the Performance of Large-Scale Atmospheric Indices in Estimating Precipitation in the Danube Basin. Atmosphere, 16(6), 667. https://doi.org/10.3390/atmos16060667
- Mares, C., Mares, I., Stanciu, A., 2009. Extreme value analysis in the Danube lower basin discharge time series in the twentieth century. Theor Appl Climatol, 95(3–4), 223–233. https://doi.org/10.1007/s00704-008-0001-0
- Mares, C., Mares, I., Stanciu, A., 2009. Extreme value analysis in the Danube lower basin discharge time series in the twentieth century. Theoretical and Applied Climatology. 95. 223-233. 10.1007/s00704-008-0001-0
- Mares, I., Dobrica, V., Demetrescu, C., Mares, C., 2016. Hydrological response in the Danube lower basin to some internal and external climate forcing factors. Hydrology and Earth System Sciences Discussions, 1–24. https://doi.org/10.5194/hess-2016-304
- Mares, I., Dobrica, V., Demetrescu, C., Mares, C., 2016. Hydrological response in the Danube lower basin to some internal and external climate forcing factors, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2016-304
- Mares, I., Mares, C., Mihailescu, M., 2013. Stochastic modeling of the connection between sea level pressure and discharge in the Danube lower basin by means of Hidden Markov Model. EGU Gen. Assem. Abstracts, 15, 7606.
- Mares, I., Mares, C., Dobrica, V., Demetrescu, C., 2020. Comparative study of statistical methods to identify a predictor for discharge at Orsova in the Lower Danube Basin. Hydrological Sciences Journal, 65(3), 371–386. https://doi.org/10.1080/02626667.2019.1699244
- Massei, N., Kingston, G.D., Hannah M.D., Vidal, J-P., Dieppois, B., Fossa, M., Hartmann, A., Lavers, D.A., Laignel, B., 2020. Understanding and predicting large-scale hydrological variability in a changing environment. Proc. IAHS, 383, 141–149, https://doi.org/10.5194/piahs-383-141-2020
- Mikhailova, M.V., Mikhailov, V.N., Morozov, V.N., 2012. Extreme hydrological events in the Danube River basin over the last decades. Water Resources, 39(2), 161–179. https://doi.org/10.1134/S0097807812010095
- Milenković, M., Savić, D., Walker, D., Dedić, A., Ducić, V., 2017. The North Atlantic Oscillation (NAO) and the water temperature of the Sava River in Serbia. J. Geogr. Inst. Cvijic. 67(2) (135–144). DOI: https://doi.org/10.2298/IJGI1702135M
- Mokhov, I., Eliseev, A., Handorf, D., Petukhov, V.K., Dethloff, K., Weisheimer, A., Khvorost’yanov, D.V., 2000. North Atlantic Oscillation: Diagnosis and simulation of decadal variability and its long-period evolution. Izvestiya Atmospheric and Oceanic Physics. 36. 555-565.
- Pagano, T.C., Garen, D.C., 2023. Integration of Climate Information and Forecasts into Western US Water Supply Forecasts (Technical Report). USDA Natural Resources Conservation Service, National Water and Climate Center.
- Pandžić, K., Likso, T., Trninić, D., Oskoruš, D., Macek, K., Bonacci, O., 2022. Relationships between large-scale atmospheric circulation and monthly precipitation and discharge in the Danube River Basin. Theoretical and Applied Climatology (2022) 148:767–777. https://doi.org/10.1007/s00704-022-03977-x
- Rimbu, N., Dima, M., Lohman, G., Stefan, S., 2004. Impacts of the North Atlantic Oscillation and the El Nino-Southern Oscillation on Danube river flow variability. Geophys Res Lett 31:1–4
- Salinas, J. L., Castellarin, A., Viglione, A., Kohnová, S., Kjeldsen, T. R. (2014). Regional parent flood frequency distributions in Europe - Part 1: Is the GEV model suitable as a pan-European parent? Hydrology and Earth System Sciences, 18(11), 4381–4389. https://doi.org/10.5194/hess-18-4381-2014
- Salinas, J.L., Castellarin, A., Viglione, A., Kohnová, S., Kjeldsen, T.R., 2014. Regional parent flood frequency distributions in Europe – Part 1: Is the GEV model suitable as a pan-European parent? Hydrol. Earth Syst. Sci., 18, 4381–4389. https://doi.org/10.5194/hess-18-4381-2014
- Schiller, H., Miklós, D., Sass, J., 2010. The Danube river and its basin physical characteristics, water regime and water balance. In M. Brilly (Ed.), Hydrological processes of the Danube river basin—perspectives from the danubian countries (pp. 25-78c). Springer Science+Business Media, B.V, Springer Netherlands, Dordrech.
- Scorzini, A.R., Paz Idarraga, C.D., Molinari, D., 2024. Monthly flood frequency regionalization for comprehensive flood damage assessment to crops, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14698, https://doi.org/10.5194/egusphere-egu24-14698
- Shi, X., Qin, T., Nie, H., Weng, B., He, S., 2019. Changes in Major Global River Discharges Directed into the Ocean. Int J Environ Res Public Health, Apr 25;16(8):1469. doi: 10.3390/ijerph16081469. PMID: 31027227; PMCID: PMC6517961.
- Shi, X., Quin, T., Nie, H., Weng, B., He, S., 2019. Changes in Major Global River Discharges Directed into the Ocean. International Journal of Environmental Research and Public Health, 16(8). https://doi.org/https://doi.org/10.3390/ijerph16081469
- Shiklomanov, A.I., Lammers, R.B., Rawlins, M.A., Smith, L.C., Pavelsky, T.M., 2007. Temporal and spatial variations in maximum river discharge from a new Russian data set. Journal of Geophysical Research: Biogeosciences, 112(4), 1–14. https://doi.org/10.1029/2006JG000352
- Steirou, E., Gerlitz, L., Apel, H., Merz, B., 2017. Links between large-scale circulation patterns and streamflow in Central Europe: A review. Journal of Hydrology, Volume 549, June 2017, Pages 484-500. https://doi.org/10.1016/j.jhydrol.2017.04.003
- Steirou, E., Gerlitz, L., Apel, H., Sun, X., Merz, B., 2019. Climate influences on flood probabilities across Europe. Hydrology and Earth System Sciences. https://doi.org/10.5194/HESS-23-1305-2019.
- Steirou, E., Gerlitz, L., Apel, H., Sun, X., Merz, B., 2019. Climate influences on flood probabilities across Europe, Hydrol. Earth Syst. Sci., 23, 1305–1322. https://doi.org/10.5194/hess-23-1305-2019
- Steirou, E., Gerlitz, L., Sun, X., Apel, H., Agarwal, A., Totz, S., Merz, B. (2022). Towards seasonal forecasting of flood probabilities in Europe using climate and catchment information. Scientific Reports, 12. https://doi.org/10.1038/s41598-022-16633-1.
- Steriou, E., Gerlitz, L., Apel, H., Merz, B., 2017. Links between large-scale circulation patterns and streamflow in Central Europe: A review. Journal of Hydrology 549 (2017) 484–500. http://dx.doi.org/10.1016/j.jhydrol.2017.04.003
- Stratimirovic, Dj., Batasa-Bjelic, I., Djurdjevic, V., Blesic, S., 2021. Changes in long-term properties and natural cycles of the Danube River level and flow induced by damming. Physica A 566 (2021) 125607. https://doi.org/10.1016/j.physa.2020.125607
- Su, Y., Smith, J. A., 2021. An Atmospheric Water Balance Perspective on Extreme Rainfall Potential for the Contiguous US. Water Resources Research, 57(4), 1–17. https://doi.org/10.1029/2020WR028387
- Teodoru, C., McGinnis, D., Wuest, A., Wehrli, B., 2006. Nutrient Retention in the Danube’s Iron Gate Reservoir. Eos Transactions American Geophysical Union. 87. 385-400. 10.1029/2006EO380001
- Tonkin, J.D., Merritt, D.M., Olden, J.D., Reynolds, L.V., Lytle, D.A., 2018. Flow regime alteration degrades ecological networks in riparian ecosystems. Nature Ecology & Evolution, 2, 86–93. https://doi.org/https://doi.org/10.1038/s41559-017-0379-0
- Towler, E., Llewellyn, D., Prein, A., Gillenland, E., 2020. Extreme-value analysis for the characterization of extremes in water resources: A generalized workflow and case study on New Mexico monsoon precipitation. Weather and Climate Extremes, 29. https://doi.org/https://doi.org/10.1016/j.wace.2020.100260
- Wedgbrow, C.S., Wilby, R.L., Fox, H.R., O’hare, G., 2002. Prospects for seasonal forecasting of summer drought and low river flow anomalies in England and Wales. International Journal of Climatology, 22(2), 219–236. https://doi.org/https://doi.org/10.1002/joc.735
- Xu, R., Qiu, D., Gao, P., Wu, C., Mu, X., Ismail, M., 2024. Prediction of streamflow based on the long-term response of streamflow to climatic factors in the source region of the Yellow River. Journal of Hydrology: Regional Studies, 52, Article 101681. https://doi.org/10.1016/j.ejrh.2024.101681.
- Zanchettin, D., Toniazzo, T., Taricco, C., Rubinetti, S., Rubino, A., Tartaglione, N., 2019. Atlantic origin of asynchronous European interdecadal hydroclimate variability. Sci Rep 9, 10998. https://doi.org/10.1038/s41598-019-47428-6
- Pekárová, P., Pramuk, B., Halmová, D., Miklánek, P., Prohaska, S., Pekár J., 2016. Identification of long-term high-flow regime changes in selected stations along the Danube River. J. Hydrol. Hydromech., 64, 2016, 4, 393–403 DOI: 10.1515/johh-2016-0045