Have a personal or library account? Click to login
Unraveling the impact of large-scale climate circulations on the maximum discharges in the middle and lower Danube basin Cover

Unraveling the impact of large-scale climate circulations on the maximum discharges in the middle and lower Danube basin

Open Access
|Dec 2025

References

  1. Basarin, B., Lukić, T., Pavić, D., Wilby, R.L., 2016. Trends and multi-annual variability of water temperatures in the river Danube, Serbia. Hydrological Processes. https://doi.org/10.1002/hyp.10863
  2. Bertola, M., Viglione, A., Hall, J., Blöschl, G., 2019. Flood trends in Europe: are changes in small and big floods different? Hydrology and Earth System Sciences, 24(4), 1805–1822.
  3. Bezak, N., Brilly, M., Šraj, M., 2016. Flood frequency analyses, statistical trends and seasonality analyses of discharge data: A case study of the Litija station on the Sava River. Journal of Flood Risk Management, 9(2), 154–168. https://doi.org/10.1111/jfr3.12118
  4. Bouwer, L., Vermaat, J.E., Aerts, J.C.J.H., 2008. Regional sensitivities of mean and peak river discharge to climate variability in Europe. Journal of Geophysical Research, 113(D19). https://doi.org/https://doi.org/10.1029/2008JD010301
  5. Cherenkova, E.A., Sidorova, M.V., 2021. On the Impact of Insufficient Atmospheric Moistening on the Low Annual Discharge of Large Rivers in European Russia. Water Resources, 48, 351–360. https://doi.org/https://doi.org/10.1134/S0097807821030064
  6. Coles, S., 2001. An Introduction to Statistical Modeling of Extreme Values. Springer.
  7. Copernicus Climate Change Service, 2022. River Discharge. https://climate.copernicus.eu/esotc/2022/river-discharge
  8. Copernicus Climate Change Service, 2024. February 2024 was globally the warmest on record – Global Sea Surface Temperatures at record high. https://climate.copernicus.eu/copernicus-february-2024-was-globally-warmest-record-global-sea-surface-temperatures-record-high
  9. Dolinaj, D., Leščešen, I., Pantelić, M., Urošev, M., Joksimović, D.M., 2019. Danube river discharge at Bezdan gauging station (Serbia) and its correlation with atmospheric circulation patterns. Geographica Pannonica, 23(1), 14–22. https://doi.org/10.5937/gp23-18514
  10. Donegan, S., Murphy, C., Harrigan, S., Broderick, C., Foran Quinn, D., Golian, S., Knight, J., Matthews, T., Prudhomme, C., Scaife, A.A., Stringer, N., Wilby, R.L. 2021. Conditioning ensemble streamflow prediction with the North Atlantic Oscillation improves skill at longer lead times, Hydrol. Earth Syst. Sci., 25, 4159–4183. https://doi.org/10.5194/hess-25-4159-2021
  11. Gardini, A., 2023. Functional and variables selection in extreme value models for regional flood frequency analysis. Environmental and Ecological Statistics, 30, 715 - 739. https://doi.org/10.1007/s10651-023-00581-8
  12. Gilleland, E., Katz, R.W., 2016. ExtRemes 2.0: An extreme value analysis package in R. Journal of Statistical Software, 72(8). https://doi.org/10.18637/jss.v072.i08
  13. Gnjato, S., Popov, T., Ivanišević, M., Trbić, G., 2023. Long-term streamflow trends in Bosnia and Herzegovina (BH). Environmental Earth Sciences, 82(14), 1–17. https://doi.org/10.1007/s12665-023-11040-9
  14. Hannaford, J., Buys, G., Stahl, K., Tallaksen, L.M., 2013. The influence of decadal-scale variability on trends in long European streamflow records, Hydrology and Earth System Sciences, 17, 2717–2733. https://doi.org/10.5194/hess-17-2717-2013
  15. Higashiano, M., Stefan, G.H., 2019. Variability and change of precipitation and flood discharge in a Japanese river basin. Journal of Hydrology Regional Studies, 21, 68–79. https://doi.org/https://doi.org/10.1016/j.ejrh.2018.12.003
  16. ICPDR., 2018. Danube climate adaptation study.
  17. Ionita, M., Tallaksen, L.M., Kingston, D., Stagge, J., Laaha, G., Van Lanen, H., Chelcea, S.M., Haslinger, K., 2016. The European 2015 drought from a climatological perspective. Hydrology and Earth System Sciences Discussions. 2016. 1-32. 10.5194/hess-2016-218
  18. Jalón-Rojas, I., Castelle, B., 2021. Climate Control of Multidecadal Variability in River Discharge and Precipitation in Western Europe. Water (Switzerland), 13(3). https://doi.org/https://doi.org/10.3390/w13030257
  19. Jánosi, I.M., Bíró, T., Lakatos, B.O., Gallas, J.A.C., Szöllősi-Nagy, A., 2023. ChangingWater Cycle under aWarming Climate: Tendencies in the Carpathian Basin. Climate, 11, 118. https://doi.org/10.3390/cli11060118
  20. Katipoğlu, O., Sarıgöl, M., 2023. Combining Machine Learning Algorithms with Empirical Mode Decomposition and Discrete Wavelet Transform for Monthly Peak Discharge Prediction. Polish Journal of Environmental Studies, 32(4), 3161–3173. https://doi.org/https://doi.org/10.15244/pjoes/161515
  21. Katz, R.W., Parlange, M.B., Naveau, P., 2002. Statistics of extremes in hydrology. Advances in Water Resources, 25(8–12), 1287–1304. https://doi.org/10.1016/S0309-1708(02)00056-8
  22. Kingston, D.G., Todd, M.C., Taylor, R.G., Thompson, J.R., Arnell, N.W., 2009. Uncertainty in the estimation of potential evapotranspiration under climate change. Geophysical Research Letters, 36(20). https://doi.org/https://doi.org/10.1029/2009GL040267
  23. Knippertz, P., Ulbrich, U., Marques, F., Corte-Real, J., 2003. Decadal changes in the link between El Nino and spring-time North Atlantic Oscillation and European-North African rainfall. Int J Climatol 23:1293–1311. https://doi.org/10.1002/joc.944
  24. Leščešen, I., Dolinaj, D., 2019. Regional flood frequency analysis of the Pannonian Basin. Water, 11(2). https://doi.org/10.3390/w11020193
  25. Leščešen, I., Šraj, M., Basarin, B., Pavić, D., Mesaroš, M., Mudelsee, M., 2022. Regional Flood Frequency Analysis of the Sava River in South-Eastern Europe. Sustainability, 14(15). https://doi.org/10.3390/su14159282
  26. Leščešen, I., Gnjato, S., Galinović, I., Basarin, B., 2024. Hydrological drought assessment of the Sava River basin in South-Eastern Europe. Journal of Water and Climate Change. 15 (8): 3902–3918. doi: https://doi.org/10.2166/wcc.2024.157
  27. Leščešen, I., Šraj, M., Pantelić, M., Dolinaj, D., 2022. Assessing the impact of climate on annual and seasonal discharges at the Sremska Mitrovica station on the Sava River, Serbia. Water Supply, 22(1), 195–207. https://doi.org/10.2166/ws.2021.277
  28. Li, R., Xu, G., 2023. Assessing the impacts of reservoirs on downstream hydrological frequency based on a general rainfall-reservoir index. Front. Earth Sci. 11:1204640. doi: 10.3389/feart.2023.1204640
  29. Lilienthal, J., Zanger, L., Bücher, A., Fried, R., 2022. A note on statistical tests for homogeneities in multivariate extreme value models for block maxima. Environmetrics, 33(7), 1–21. https://doi.org/10.1002/env.2746
  30. Liu, Q., Bader, J., Jungclaus, J.H., Matei, D., 2025. More extreme summertime North Atlantic Oscillation under climate change. Commun Earth Environ 6, 474. https://doi.org/10.1038/s43247-025-02422-x
  31. Lorenzo-Lacruz, J., Morán-Tejeda, E., Vicente-Serrano, S.M., Hannaford, J., García, C., Peña-Angulo, D., Murphy, C., 2022. Streamflow frequency changes across western Europe and interactions with North Atlantic atmospheric circulation patterns. Global and Planetary Change, Volume 212. 103797. https://doi.org/10.1016/j.gloplacha.2022.103797
  32. Mares, C., Dobrica, V., Mares, I., Demetrescu, C., 2025. Testing the Performance of Large-Scale Atmospheric Indices in Estimating Precipitation in the Danube Basin. Atmosphere, 16(6), 667. https://doi.org/10.3390/atmos16060667
  33. Mares, C., Mares, I., Stanciu, A., 2009. Extreme value analysis in the Danube lower basin discharge time series in the twentieth century. Theor Appl Climatol, 95(3–4), 223–233. https://doi.org/10.1007/s00704-008-0001-0
  34. Mares, C., Mares, I., Stanciu, A., 2009. Extreme value analysis in the Danube lower basin discharge time series in the twentieth century. Theoretical and Applied Climatology. 95. 223-233. 10.1007/s00704-008-0001-0
  35. Mares, I., Dobrica, V., Demetrescu, C., Mares, C., 2016. Hydrological response in the Danube lower basin to some internal and external climate forcing factors. Hydrology and Earth System Sciences Discussions, 1–24. https://doi.org/10.5194/hess-2016-304
  36. Mares, I., Dobrica, V., Demetrescu, C., Mares, C., 2016. Hydrological response in the Danube lower basin to some internal and external climate forcing factors, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2016-304
  37. Mares, I., Mares, C., Mihailescu, M., 2013. Stochastic modeling of the connection between sea level pressure and discharge in the Danube lower basin by means of Hidden Markov Model. EGU Gen. Assem. Abstracts, 15, 7606.
  38. Mares, I., Mares, C., Dobrica, V., Demetrescu, C., 2020. Comparative study of statistical methods to identify a predictor for discharge at Orsova in the Lower Danube Basin. Hydrological Sciences Journal, 65(3), 371–386. https://doi.org/10.1080/02626667.2019.1699244
  39. Massei, N., Kingston, G.D., Hannah M.D., Vidal, J-P., Dieppois, B., Fossa, M., Hartmann, A., Lavers, D.A., Laignel, B., 2020. Understanding and predicting large-scale hydrological variability in a changing environment. Proc. IAHS, 383, 141–149, https://doi.org/10.5194/piahs-383-141-2020
  40. Mikhailova, M.V., Mikhailov, V.N., Morozov, V.N., 2012. Extreme hydrological events in the Danube River basin over the last decades. Water Resources, 39(2), 161–179. https://doi.org/10.1134/S0097807812010095
  41. Milenković, M., Savić, D., Walker, D., Dedić, A., Ducić, V., 2017. The North Atlantic Oscillation (NAO) and the water temperature of the Sava River in Serbia. J. Geogr. Inst. Cvijic. 67(2) (135–144). DOI: https://doi.org/10.2298/IJGI1702135M
  42. Mokhov, I., Eliseev, A., Handorf, D., Petukhov, V.K., Dethloff, K., Weisheimer, A., Khvorost’yanov, D.V., 2000. North Atlantic Oscillation: Diagnosis and simulation of decadal variability and its long-period evolution. Izvestiya Atmospheric and Oceanic Physics. 36. 555-565.
  43. Pagano, T.C., Garen, D.C., 2023. Integration of Climate Information and Forecasts into Western US Water Supply Forecasts (Technical Report). USDA Natural Resources Conservation Service, National Water and Climate Center.
  44. Pandžić, K., Likso, T., Trninić, D., Oskoruš, D., Macek, K., Bonacci, O., 2022. Relationships between large-scale atmospheric circulation and monthly precipitation and discharge in the Danube River Basin. Theoretical and Applied Climatology (2022) 148:767–777. https://doi.org/10.1007/s00704-022-03977-x
  45. Rimbu, N., Dima, M., Lohman, G., Stefan, S., 2004. Impacts of the North Atlantic Oscillation and the El Nino-Southern Oscillation on Danube river flow variability. Geophys Res Lett 31:1–4
  46. Salinas, J. L., Castellarin, A., Viglione, A., Kohnová, S., Kjeldsen, T. R. (2014). Regional parent flood frequency distributions in Europe - Part 1: Is the GEV model suitable as a pan-European parent? Hydrology and Earth System Sciences, 18(11), 4381–4389. https://doi.org/10.5194/hess-18-4381-2014
  47. Salinas, J.L., Castellarin, A., Viglione, A., Kohnová, S., Kjeldsen, T.R., 2014. Regional parent flood frequency distributions in Europe – Part 1: Is the GEV model suitable as a pan-European parent? Hydrol. Earth Syst. Sci., 18, 4381–4389. https://doi.org/10.5194/hess-18-4381-2014
  48. Schiller, H., Miklós, D., Sass, J., 2010. The Danube river and its basin physical characteristics, water regime and water balance. In M. Brilly (Ed.), Hydrological processes of the Danube river basin—perspectives from the danubian countries (pp. 25-78c). Springer Science+Business Media, B.V, Springer Netherlands, Dordrech.
  49. Scorzini, A.R., Paz Idarraga, C.D., Molinari, D., 2024. Monthly flood frequency regionalization for comprehensive flood damage assessment to crops, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14698, https://doi.org/10.5194/egusphere-egu24-14698
  50. Shi, X., Qin, T., Nie, H., Weng, B., He, S., 2019. Changes in Major Global River Discharges Directed into the Ocean. Int J Environ Res Public Health, Apr 25;16(8):1469. doi: 10.3390/ijerph16081469. PMID: 31027227; PMCID: PMC6517961.
  51. Shi, X., Quin, T., Nie, H., Weng, B., He, S., 2019. Changes in Major Global River Discharges Directed into the Ocean. International Journal of Environmental Research and Public Health, 16(8). https://doi.org/https://doi.org/10.3390/ijerph16081469
  52. Shiklomanov, A.I., Lammers, R.B., Rawlins, M.A., Smith, L.C., Pavelsky, T.M., 2007. Temporal and spatial variations in maximum river discharge from a new Russian data set. Journal of Geophysical Research: Biogeosciences, 112(4), 1–14. https://doi.org/10.1029/2006JG000352
  53. Steirou, E., Gerlitz, L., Apel, H., Merz, B., 2017. Links between large-scale circulation patterns and streamflow in Central Europe: A review. Journal of Hydrology, Volume 549, June 2017, Pages 484-500. https://doi.org/10.1016/j.jhydrol.2017.04.003
  54. Steirou, E., Gerlitz, L., Apel, H., Sun, X., Merz, B., 2019. Climate influences on flood probabilities across Europe. Hydrology and Earth System Sciences. https://doi.org/10.5194/HESS-23-1305-2019.
  55. Steirou, E., Gerlitz, L., Apel, H., Sun, X., Merz, B., 2019. Climate influences on flood probabilities across Europe, Hydrol. Earth Syst. Sci., 23, 1305–1322. https://doi.org/10.5194/hess-23-1305-2019
  56. Steirou, E., Gerlitz, L., Sun, X., Apel, H., Agarwal, A., Totz, S., Merz, B. (2022). Towards seasonal forecasting of flood probabilities in Europe using climate and catchment information. Scientific Reports, 12. https://doi.org/10.1038/s41598-022-16633-1.
  57. Steriou, E., Gerlitz, L., Apel, H., Merz, B., 2017. Links between large-scale circulation patterns and streamflow in Central Europe: A review. Journal of Hydrology 549 (2017) 484–500. http://dx.doi.org/10.1016/j.jhydrol.2017.04.003
  58. Stratimirovic, Dj., Batasa-Bjelic, I., Djurdjevic, V., Blesic, S., 2021. Changes in long-term properties and natural cycles of the Danube River level and flow induced by damming. Physica A 566 (2021) 125607. https://doi.org/10.1016/j.physa.2020.125607
  59. Su, Y., Smith, J. A., 2021. An Atmospheric Water Balance Perspective on Extreme Rainfall Potential for the Contiguous US. Water Resources Research, 57(4), 1–17. https://doi.org/10.1029/2020WR028387
  60. Teodoru, C., McGinnis, D., Wuest, A., Wehrli, B., 2006. Nutrient Retention in the Danube’s Iron Gate Reservoir. Eos Transactions American Geophysical Union. 87. 385-400. 10.1029/2006EO380001
  61. Tonkin, J.D., Merritt, D.M., Olden, J.D., Reynolds, L.V., Lytle, D.A., 2018. Flow regime alteration degrades ecological networks in riparian ecosystems. Nature Ecology & Evolution, 2, 86–93. https://doi.org/https://doi.org/10.1038/s41559-017-0379-0
  62. Towler, E., Llewellyn, D., Prein, A., Gillenland, E., 2020. Extreme-value analysis for the characterization of extremes in water resources: A generalized workflow and case study on New Mexico monsoon precipitation. Weather and Climate Extremes, 29. https://doi.org/https://doi.org/10.1016/j.wace.2020.100260
  63. Wedgbrow, C.S., Wilby, R.L., Fox, H.R., O’hare, G., 2002. Prospects for seasonal forecasting of summer drought and low river flow anomalies in England and Wales. International Journal of Climatology, 22(2), 219–236. https://doi.org/https://doi.org/10.1002/joc.735
  64. Xu, R., Qiu, D., Gao, P., Wu, C., Mu, X., Ismail, M., 2024. Prediction of streamflow based on the long-term response of streamflow to climatic factors in the source region of the Yellow River. Journal of Hydrology: Regional Studies, 52, Article 101681. https://doi.org/10.1016/j.ejrh.2024.101681.
  65. Zanchettin, D., Toniazzo, T., Taricco, C., Rubinetti, S., Rubino, A., Tartaglione, N., 2019. Atlantic origin of asynchronous European interdecadal hydroclimate variability. Sci Rep 9, 10998. https://doi.org/10.1038/s41598-019-47428-6
  66. Pekárová, P., Pramuk, B., Halmová, D., Miklánek, P., Prohaska, S., Pekár J., 2016. Identification of long-term high-flow regime changes in selected stations along the Danube River. J. Hydrol. Hydromech., 64, 2016, 4, 393–403 DOI: 10.1515/johh-2016-0045
DOI: https://doi.org/10.2478/johh-2025-0027 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 354 - 367
Submitted on: Jul 1, 2025
Accepted on: Nov 13, 2025
Published on: Dec 18, 2025
Published by: Slovak Academy of Sciences, Institute of Hydrology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Igor Leščešen, Constantin Mares, Milan Josić, Biljana Basarin, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.