Have a personal or library account? Click to login
The average and closure problem of turbulence theory resolved in random space Cover

The average and closure problem of turbulence theory resolved in random space

By: Karol Kosorin  
Open Access
|Dec 2025

References

  1. Barenblatt, G.I., 1996. Scaling, Self-similarity, and Intermedate Asymptotics: Canbridge, 1996
  2. Debnath, L., 1998. Wavelet transforms, fractals and turbulence, in Nonlinear Instability Chaos and Turbulence, Advances in Fluid Mechanics, ed. by L. Debnath and D.N. Riahi, WIT Press, 129–179.
  3. Dúbrava, L., Vajcík, S., 1988. Energy balance of turbulent flow, VEDA, Slovak Academy of Sciences.
  4. Ecke, R. (2005) The turbulence problem, Los Alamos Science, No. 29, 124–138.
  5. Hunt, J.C.R., Vassilicos, J.C., 1991. Kolmogorov’s contributions to the physical and geometrical understanding of small-scale turbulence and recent developments, Proc. R. Soc. Lond., Ser. A, 434 183–210.
  6. Klebanoff, P.S., 1954. Characteristics of turbulence in a boundary layer with zero pressure gradient, Report 1247, NACA TN 3178, 1135–1138.
  7. Kolmogorov, A.N., 1941a. The local structure of turbulence in an incompressible fluid with very large Reynolds number, Dokl. Akad. Nauk SSSR, 30, 301–305.
  8. Kolmogorov, A.N., 1941b. Dissipation of energy under locally isotropic turbulence, Dokl. Akad. Nauk SSSR, 32, 16–18.
  9. Kosorin, K., 1995. On solution of two problems in free surface seepage flow hydrodynamics, In Computer Modelling of Free and Moving Boundary Problems III, Comp. Mech, Publications, Southampton, 245–254.
  10. Kosorin, K., 2011. Theory of orthogonal flow in elastic chambers and bio-bags, in Fluid Structure Interaction VI, WIT Press, Boston, 103–118.
  11. Li, Y.C., 2013. Major open problems in chaos theory, turbulence and nonlinear dynamics, Dynam. PDE, 10, 4, 379–392.
  12. Lojcianskij, L.G., 1954. Mechanics of Liquids and Gases, SNTL, Prague.
  13. Lumley, J.L., 1989. The state of turbulence research, In Advances in Turbulence, eds. W. K. George, R. Arndt, Hemisphere, New York, 1–10.
  14. Mäsiar, E., Dúbrava, L., 1975. Strain gauge scanner measurement of the water flow velocity fluctuations, In Proceedings, XVI Congress of AHR, Sao Paulo, 24–28.
  15. Milne-Thomson, L. M., 1960. Theoretical Hydodynamics, Fourth ed., London -New York.
  16. Monin, A.S., Yaglom, A.M., 1975. Statistical Fluid Mechanics: Vol. 2, MIT Press, Cambridge, MA.
  17. Navier, M. Mémoire sur les Lois du Mouvements des Fluides. Mem. De ľAcad. D. Sci. 6, 389 (1827)
  18. Reichardt, H., 1938. Messungen turbulenten Schwangkungen, Naturwissenschaften, 404.
  19. Reynolds, O., 1895. On the dynamical theory of incompressible viscous fluids and the determination of the criterion, Phil. Trans. Roy. Soc., T. 186 A 123, or Sci. Papers 1. 355.
  20. Schlichting, H., 1960. Boundary Layer Theory, McGraw-Hill, New York, 465–469.
  21. Soo, S. L. (1962) Analytical Thermodynamics, Prentice-Hall.
  22. Vygodsky, M. Mathematical Handbook, Higher Mathematics, MIR Publishers, Moscow 1971, p. 633.
  23. Yushkov, V.P. (2015) The Hamiltonian Formalism and Quantum–Mechanical Analogy in the Probabilistic Description of Turbulence, Theoretical and Mathematical Physics, Moscow Univ. Phys. Bull.,2015, vol. 70
DOI: https://doi.org/10.2478/johh-2025-0026 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 333 - 353
Submitted on: Jun 25, 2025
Accepted on: Oct 29, 2025
Published on: Dec 18, 2025
Published by: Slovak Academy of Sciences, Institute of Hydrology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Karol Kosorin, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.