Have a personal or library account? Click to login
Optimized machine learning models for accurate prediction of the discharge coefficient in hydraulic weirs Cover

Optimized machine learning models for accurate prediction of the discharge coefficient in hydraulic weirs

Open Access
|Sep 2025

References

  1. Abdalla, M. 2021. Mathematical Model of Dam Break: Applied Study of Derna Dam. Mansoura Engineering Journal, 27(4): 46-59. https://doi.org/10.21608/bfemu.2002.199421
  2. Akbari, M., F. Salmasi, Arvanaghi, H., Karbasi, M., Farsadizadeh, D., 2019. Application of Gaussian process regression model to predict discharge coefficient of Gated Piano Key Weir. Water Resources Management, 33: 3929-3947. https://doi.org/10.1007/s11269-019-02343-3
  3. Anderson, R. M., 2011. Piano key weir head discharge relationships, Utah State University.
  4. Angelakis, A. N., Baba, A., Valipour, M., Dietrich, J., Fallah-Mehdipour, E., Krasilnikoff, J., Bilgic, E., Passchier, C., Tzanakakis, V. A., Kumar, R., Min, Z., Dercas, N., Ahmed, A. T., 2024. Water Dams: from ancient to present times and into the future. Water 16(13): 1889. https://doi.org/10.3390/w16131889
  5. Annunziato, A., Santini, M., Proietti, C., de Girolamo, L., Lorini, V., Gerhardinger, A., & Tucci, M., 2024. Modelling and Validation of the Derna Dam Break Event. GeoHazards 5(2): 504-529. https://doi.org/10.3390/geohazards5020026
  6. Baratchi, M., Wang, C., Limmer, S., van Rijn, N.J., Hoos, H., Bäck, T., Olhofer, M., 2024. Automated machine learning: past, present and future. Artificial intelligence review 57(5): 122. https://doi.org/10.1007/s10462-024-10726-1
  7. Belaabed, F., Arabet, L. 2024. Prediction of the Discharge Coefficient of a Labyrinth Weir Type D by an Artificial Neural Network Method. Archives of Hydro-Engineering and Environmental Mechanics 71(1). https://doi.org/10.2478/heem-2024-0004
  8. Belaabed, F., Goudjil, K., Ouamane, A., 2021. Utilization of computational intelligence approaches to estimate the relative head of PK-Weir for submerged flow. Neural Computing and Applications 33(19): 13001-13013. https://doi.org/10.1007/s00521-021-05996-7
  9. Belaabed, F., Ouamane, A., 2011. Contribution to the study of the Piano Key Weirs submerged by the downstream level. Proceedings of the International Conference Labyrinth and Piano Key Weirs–PKW.
  10. Bijanvand, S., Asgharzadeh-Bonab, A., Parsaie, A., Afaridegan, E., 2025. Enhanced prediction of discharge coefficients in Harmonic Plan Circular Weirs using advanced machine learning and ensemble techniques. Flow Measurement and Instrumentation, 102, 102812. https://doi.org/10.1016/j.flowmeasinst.2025.102812
  11. Borghei, S. M., M. A. Nekooie, Sadeghian, H., Ghazizadeh, M.R.J., 2013. Triangular labyrinth side weirs with one and two cycles. Proceedings of the Institution of Civil Engineers-Water Management, Thomas Telford Ltd.
  12. Breiman, L. (2001). Random forests. Machine learning 45: 5-32. https://doi.org/10.1680/jwama.15.00032
  13. Cicero, G.M, Delisle, J.R., 2013. Discharge characteristics of Piano Key weirs under submerged flow. Proc. of the Int. Labyrinth and Piano Key Weirs II-PKW 2013, Leiden: CRC Press, pp 101–108.
  14. Cicero, G.M., Vermeulen, J., Laugier, F., 2016. Influence of some geometrical parameters on piano key weir discharge efficiency. Paper presented at the meeting of 6th international Symposium on Hydraulic Structures Hydraulic Structures and Water System Management, Portland, Oregon, USA.
  15. Chen, T., 2014. Introduction to boosted trees. University of Washington Computer Science 22(115): 14-40.
  16. Dehghani, M., Trojovský, P., 2023. Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems. Frontiers in Mechanical Engineering 8: 1126450. https://doi.org/10.3389/fmech.2022.1126450
  17. Duan, T., Anand, A., Ding, Y.D., Thai, K.K., Basu, S., Ng, A., Schuler, A., 2020. Ngboost: Natural gradient boosting for probabilistic prediction. International conference on machine learning, PMLR.
  18. Eltarabily, M. G., Kamal Hamed, A., Elkiki, M., Selim, T., 2024. Hydraulic assessment of different types of piano key weirs. ISH Journal of Hydraulic Engineering, 1-24. https://doi.org/10.1080/09715010.2024.2415938
  19. Faramarzi, A., Heidarinejad, M., Mirjalili, S., Gandomi, H.A., 2020. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert systems with applications 152: 113377. https://doi.org/10.1016/j.eswa.2020.113377
  20. Gholami, A., Bonakdari, H., Ebtehaj, I., Mohammadian, M., Gharabaghi, B., Khodashenas, R.S., 2018. Uncertainty analysis of intelligent model of hybrid genetic algorithm and particle swarm optimization with ANFIS to predict threshold bank profile shape based on digital laser approach sensing. Measurement 121: 294-303. https://doi.org/10.1016/j.measurement.2018.02.070
  21. Halevy, A., Norvig, P., Pereira, F., 2009. The unreasonable effectiveness of data. IEEE intelligent systems 24(2): 8-12. https://doi.org/10.1109/MIS.2009.36
  22. Imran, J., Nemnem, A., Tanim, A., Khan, S.M., Nahian, A., Goharian, E., 2024. Rising Waters, Falling Dams: Deciphering the Derna Flood Disaster. https://doi.org/10.21203/rs.3.rs-3809203/v1
  23. Kaplan, J., McCandlish, S., Henighan, T., Brown, B. T., Chess, B., Child, R., Gray, S., Radford, A., Wu, J., Amodei, D., 2020. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361.
  24. Kyaw, P. P. S. S., Uchida, T., 2023. Assessment of the Breaching Event, Breach Parameters and Failure Mechanisms of the Spillway Collapse in the Swa Dam, Myanmar. Water 15(8): 1513. https://doi.org/10.3390/w15081513
  25. Laiadi, A., Ouamane, A., 2019. Etude de l’effet de la forme du radier de l’alveole aval sur la performance du deversoir en touches de piano. Doctoral thesis; BISKRA University. pp 108-109.
  26. Lempérière, F., Ouamane. A., 2003. The Piano Keys weir: a new cost-effective solution for spillways. International Journal on Hydropower & Dams 10(5): 144-149.
  27. Lundberg, S. M., Lee, S.-I., 2017. A unified approach to interpreting model predictions. Advances in neural information processing systems 30.
  28. Machiels, O., Erpicum, S., Archambeau, P., Dewals, B., Pirotton, M., 2013. Parapet wall effect on piano key weir efficiency. Journal of irrigation and drainage engineering 139(6): 506-511. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000566
  29. McNabb, D. E., Swenson, C. R., 2023. Stored Water: Failing Dams and Other Storage Crises. America’s Water Crises: The Impact of Drought and Climate Change, Springer: 129-156. https://doi.org/10.1007/978-3-031-27380-3_7
  30. Mehri, Y., Mehri, M., Nasrabadi, M., 2024. Application of machine learning models in predicting discharge coefficient of side B-type piano key weir. Flow Measurement and Instrumentation, 100, 102687. https://doi.org/10.1016/j.flowmeasinst.2024.102687
  31. Mirjalili, S., Lewis, A., 2016. The whale optimization algorithm. Advances in engineering software 95: 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008
  32. Modi, S., Bokkena, B., Avhad, P., Kshirsagar, V., Dahiya T., Parikh, T., 2024. Automated Synthetic Data Generation Pipeline Using Large Language Models for Enhanced Model Robustness and Fairness in Deep Learning Systems. 2024 3rd International Conference for Advancement in Technology (ICONAT), IEEE. https://doi.org/10.1109/ICONAT61936.2024.10774980
  33. Nadimi-Shahraki, M. H., Zamani, H., Varzaneh, A.Z., Mirjalili, S., 2023. A systematic review of the whale optimization algorithm: theoretical foundation, improvements, and hybridizations. Archives of Computational Methods in Engineering 30(7): 4113-4159. https://doi.org/10.1007/s11831-023-09928-7
  34. Noui, A., Ouamane, A., 2011. Study of optimization of the piano key weir. Proceedings of the international conference labyrinth and piano key weirs–PKW.
  35. Ouamane, A., Lempérière, F., 2006. Design of a new economic shape of weir. Proceedings of the International Symposium on Dams in the Societies of the 21st Century.
  36. Palmer, T. 2024. Seek Higher Ground: The Natural Solution to Our Urgent Flooding Crisis, Univ of California Press.
  37. Pinchard, T., Farges, J.-L., Boutet, J-M., Lochu, A., Laugier, F., 2013. Spillway capacity upgrade at Malarce dam: Construction of an additional piano key weir spillway. Labyrinth and Piano Key Weirs: 243-252.
  38. Qiu, W.-X., Si, Z.-Z., Mou, D-S., Dai, C-Q., Li, J-T., Liu, W., 2025. Data-driven vector degenerate and nondegenerate solitons of coupled nonlocal nonlinear Schrödinger equation via improved PINN algorithm. Nonlinear Dynamics 113(5): 4063-4076. https://doi.org/10.1007/s11071-024-09648-y
  39. Quinlan, J. R., 1992. Learning with continuous classes. 5th Australian joint conference on artificial intelligence, World Scientific. https://doi.org/10.1142/1897
  40. Rastgou, M., Bayat, H., Mansoorizadeh, M., Gregory, A.S., 2022. Estimating soil water retention curve by extreme learning machine, radial basis function, M5 tree and modified group method of data handling approaches. Water Resources Research 58(4): e2021WR031059. https://doi.org/10.1029/2021WR031059
  41. Ribeiro, M. L., J. Boillat, et al. (2011). Experimental parametric study for hydraulic design of PKWs. Proc. Int. Conf. Labyrinth and Piano Key Weirs, Liege B, CRC Press Boca Raton, FL.
  42. Ribeiro, M. L., Pfister, M., Schleiss, J.A., Boillat, J-L., 2012. Hydraulic design of A-type piano key weirs. Journal of Hydraulic Research 50(4): 400-408. https://doi.org/10.1080/00221686.2012.695041
  43. Singh, D. Kumar, M., 2021. Hydraulic design and analysis of piano key weirs: a review. Arabian Journal for Science and Engineering: 1-15. https://doi.org/10.1007/s13369-021-06370-4
  44. Singh, D., Kumar, M., 2022. Energy dissipation of flow over the type-B piano key weir. Flow Measurement and Instrumentation 83: 102109. https://doi.org/10.1016/j.flowmeasinst.2021.102109
  45. Souri, J., OmidvarMohammadi, H., Neyshabouri, S.A.A.S., Chooplou, S.A., Kahrizi, E., Akbari, H., 2024. Numerical simulation of aeration impact on the performance of a-type rectangular and trapezoidal piano key weirs. Modeling Earth Systems and Environment 10(4): 5205-5224.
  46. Sujon, K. M., Hassan, R. B., Towshi, T.Z., Othman, A.M., Samad, A., Choi, K., 2024. When to Use Standardization and Normalization: Empirical Evidence from Machine Learning Models and XAI. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3462434
  47. Tian, W., Isleem, H. F., Hamad, K.A., Elshaarawy, K.M., 2024. Enhancing discharge prediction over Type-A piano key weirs: An innovative machine learning approach. Flow Measurement and Instrumentation 100: 102732. https://doi.org/10.1016/j.flowmeasinst.2024.102732
  48. Tullis, B.P., Dabling, M.R., 2012 Piano Key Weir Submergence in Channel Applications. International Workshop on Piano Key Weir for In-Stream Storage and Dam Safety (PKWISD-2012), New Delhi, India.
  49. Wahl, T. L., Heiner, B. J., 2023. Hydraulic Jacking in Concrete Spillway Chutes.” Journal of Dam Safety 20(2).
  50. Zhang, X., Wang, C., Chen, X., Dong, J., Hu, M., Liu, S., 2024. Insights into the cause of the Oroville dam spillway failure, 2017, California. Environmental Science and Pollution Research 31(14): 21356-21369. https://doi.org/10.1007/s11356-024-32462-3
  51. Zhong, M., Long, W., 2017. Whale optimization algorithm with nonlinear control parameter. MATEC Web of Conferences, EDP Sciences. https://doi.org/10.1051/matecconf/201713900157
DOI: https://doi.org/10.2478/johh-2025-0023 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 295 - 309
Submitted on: May 11, 2025
|
Accepted on: Sep 14, 2025
|
Published on: Sep 27, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Faris Belaabed, Leila Arabet, Kamel Goudjil, Ahmed Ouamane, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.