Have a personal or library account? Click to login
Hydrodynamic effects of porous baskets on scour patterns at elliptical and hexagonal piers Cover

Hydrodynamic effects of porous baskets on scour patterns at elliptical and hexagonal piers

Open Access
|Sep 2025

References

  1. Akhlaghi, E., Babarsad, M. S., Derikvand, E., Abedini, M. 2020. Assessment the effects of different parameters to rate scour around single piers and pile groups: a review. Archives of Computational Methods in Engineering, 27(1), 183-197.
  2. Alemi, M., Pêgo, J. P., Okhravi, S., Maia, R. 2024. Numerical analysis of flow structure evolution during scour hole development: A case study of a pile-supported pier with partially buried pile cap. Modelling, 5(3), 884-900.
  3. Al-Shukur, A. H. K., Obeid, Z. H. 2016. Experimental study of bridge pier shape to minimize local scour. International Journal of Civil Engineering and Technology, 7(1), 162-171.
  4. Azevedo, M. L., Leite, F. C., Lima, M. M. C. L. 2014. Experimental study of scour around circular and elongated bridge piers with and without pier slot. In MEFTE 2014 (pp. 195-200). Portugal: Porto.
  5. Bara, M. K., Dulovičová, R., Velísková, Y., Farkas, C. 2024. Impacts of riverbed aggradation on groundwater regime in a lowland area. Journal of Hydrology and Hydromechanics, 72(2), 185-198.
  6. Baranwal, A., Das, B. S., Setia, B. 2023. A comparative study of scour around various shaped bridge pier. Engineering Research Express, 5(1), 015052. https://doi.org/10.1088/2631-8695/acbfa1
  7. Bestawy, A., Eltahawy, T., Alsaluli, A., Almaliki, A., Alqurashi, M. 2020. Reduction of local scour around a bridge pier by using different shapes of pier slots and collars. Water Supply, 20(3), 1006-1015. https://doi.org/10.2166/ws.2020.022
  8. Chen, J. G., Antonia, R. A., Zhou, Y. 2023. Relationship between coherent Reynolds shear stress and large-scale vortical structures. Physics of Fluids, 35(2). https://doi.org/10.1063/5.0141580
  9. Chiew, Y. M., Melville, B. W. 1989. Local scour at bridge piers with non-uniform sediment. Proceedings of the Institution of Civil Engineers, 87(2), 215-224.
  10. Debnath, K., Chaudhuri, S. 2012. Local scour around non-circular piers in clay–sand mixed cohesive sediment beds. Engineering Geology, 151, 1-14.
  11. Ettema, R., Kirkil, G., Muste, M. 2006. Similitude of large-scale turbulence in experiments on local scour at cylinders. Journal of Hydraulic Engineering, 132(1), 33-40.
  12. Ettema, R., Melville, B. W., Constantinescu, G. 2011. Evaluation of bridge scour research: Pier scour processes and predictions. Washington, DC, USA: Transportation Research Board of the National Academies.
  13. Ettema, R., Mostafa, E. A., Melville, B. W., Yassin, A. A. 1998. Local scour at skewed piers. Journal of Hydraulic Engineering, 124(7), 756-759.
  14. Fredsoe, J., Sumer, B. M. 2002. The mechanics of scour in the marine environment (Vol. 17). World Scientific Publishing Company.
  15. Ghorbani, B., Kells, J. A. 2008. Effect of submerged vanes on the scour occurring at a cylindrical pier. Journal of Hydraulic Research, 46(5), 610-619.
  16. Heidarpour, M., Afzalimehr, H., Izadinia, E. 2010. Reduction of local scour around bridge pier groups using collars. International Journal of Sediment Research, 25(4), 411-422.
  17. Jafari, R., Sui, J. 2024. Channel deformation around non-submerged spur dikes with different alignment angles under ice cover. Journal of Hydrology and Hydromechanics, 72(3), 372-385.
  18. Jalal, H. K., Hassan, W. H. 2020. Effect of bridge pier shape on depth of scour. In IOP conference series: materials science and engineering (Vol. 671, No. 1, p. 012001). IOP Publishing. https://doi.org/10.1088/1757-899X/671/1/012001
  19. Jiang, S., Yan, F., Zhang, J., Song, B. 2023. Multi-scale wake characteristics of the flow over a cylinder with different V-Groove numbers. Water, 15(4), 805. https://doi.org/10.3390/w15040805
  20. Khoshkonesh, A., Nsom, B., Okhravi, S., Dehrashid, F. A., Heidarian, P., DiFrancesco, S. 2024. Numerical investigation of dam break flow over erodible beds with diverse substrate level variations. Journal of Hydrology and Hydromechanics, 72(1), 80-94.
  21. Laguarda, L., Hickel, S. 2024. Low-frequency dynamics of turbulent recirculation bubbles. Physics of Fluids, 36(8). https://doi.org/10.1063/5.0227332
  22. Laursen, E. M. 1963. An analysis of relief bridge scour. Journal of the Hydraulics Division, 89(3), 93-118.
  23. Lee, W. L., Lu, C. W., Huang, C. K. 2021. Application of a single porous basket as a pier scour countermeasure. Water, 13(21), 3052. https://doi.org/10.3390/w13213052.
  24. Li, G., Sui, J., Sediqi, S. 2024. Turbulent flow structure around a single submerged angled spur dike under ice cover. Journal of Hydrology and Hydromechanics, 72(4), 522-537.
  25. Lima, M. M., Carvalho, E., Aleixo, R. 2018. LDV measurements of the flow induced by an elongated bridge pier: the fixed bed case. In Free Surface Flows and Transport Processes: 36th International School of Hydraulics (pp. 307-321). Springer International Publishing.
  26. Melville, B. W. 2000. Bridge Scour (Vol. 112). Water Resources Publications.
  27. Melville, B. W., Chiew, Y. M. 1999. Time scale for local scour at bridge piers. Journal of Hydraulic Engineering, 125(1), 59-65.
  28. Mohammed, T. A., Noor, M. J. M. M., Ghazali, A. H., Yusuf, B., Saed, K. 2007. Physical modeling of local scouring around bridge piers in erodable bed. Journal of King Saud University-Engineering Sciences, 19(2), 195-206.
  29. Nazari-Sharabian, M., Nazari-Sharabian, A., Karakouzian, M., Karami, M. 2020. Sacrificial piles as scour countermeasures in river bridges a numerical study using flow-3D. Civil Engineering Journal, 6(6), 1091.
  30. Negm, A. M., Moustafa, G. M., Abdalla, Y. M., Fathy, A. A. 2009. Optimal shape of collar to minimize local scour around bridge piers. Proc. of IWTC13, 12-15.
  31. Nortek AS. (2001). Velocimeter User Manual. Nortek AS, Rud, Norway.
  32. Okhravi, S., Gohari, S., Alemi, M., Maia, R. 2022. Effects of bed-material gradation on clear water scour at single and group of piles. Journal of Hydrology and Hydromechanics, 70(1), 114-127.
  33. Okhravi, S., Gohari, S., Alemi, M., & Maia, R. 2023. Numerical modeling of local scour of non-uniform graded sediment for two arrangements of pile groups. International Journal of Sediment Research, 38(4), 597-614.
  34. Okhravi, S., Velísková, Y., Gohari, S., Fazeres-Ferradosa, T. 2024. Surface bed characteristics of circular pier scouring in different sediment mixtures under flow shallowness variations. In River Flow 2022 (pp. 533-541), 11th International Conference on Fluvial Hydraulics, Kingston and Ottawa, Canada, 8-10th November 2022, CRC Press.
  35. Pope, S. B. 2001. Turbulent flows. Measurement Science and Technology, 12(11), 2020-2021.
  36. Raudkivi, A. J., Ettema, R. 1983. Clear-water scour at cylindrical piers. Journal of Hydraulic Engineering, 109(3), 338-350.
  37. Roy, C. (2017). Effect of bridge pier geometry on local scouring. International Journal of Earth Science and Engineering, 10(2), 374-377.
  38. Salehi, S., Azimi, A. H., Heidarpour, M. 2024. Hydraulic properties and local scour downstream of permeable grade-control structures. Journal of Irrigation and Drainage Engineering, 150(6), 04024028. https://doi.org/10.1061/JIDEDH.IRENG-10364
  39. Sediqi, S., Sui, J., Li, G., Dziedzic, M. 2024. Characteristics of turbulent flow around bridge abutments in the presence of vegetation in channel bed under ice-covered flow conditions. Cold Regions Science and Technology, 221, 104172. https://doi.org/10.1016/j.coldregions.2024.104172
  40. Singh, N. B., Devi, T. T., Kumar, B. 2022. The local scour around bridge piers-a review of remedial techniques. ISH Journal of Hydraulic Engineering, 28, 527-540.
  41. Taylor, Z. J., Kopp, G. A., Gurka, R. 2011. Effects of leading edge geometry on the flow around elongated bluff bodies. In Seventh International Symposium on Turbulence and Shear Flow Phenomena. Begel House Inc.
  42. Vijayasree, B. A., Eldho, T. I., Mazumder, B. S., Ahmad, N. 2019. Influence of bridge pier shape on flow field and scour geometry. International Journal of River Basin Management, 17(1), 109-129.
  43. Wang, C., Liang, F., Yu, X. 2017. Experimental and numerical investigations on the performance of sacrificial piles in reducing local scour around pile groups. Natural Hazards, 85, 1417-1435.
  44. Wu, P., Hirshfield, F., Sui, J. Y. 2015. Local scour around bridge abutments under ice covered condition–an experimental study. International Journal of Sediment Research, 30(1), 39-47.
DOI: https://doi.org/10.2478/johh-2025-0018 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 230 - 247
Submitted on: Feb 26, 2025
|
Accepted on: Jun 30, 2025
|
Published on: Sep 27, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Reza Ahmadi, Hossein Afzalimehr, Hussam Jabbar Abed, Saeid Okhravi, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.