References
- Akhlaghi, E., Babarsad, M. S., Derikvand, E., Abedini, M. 2020. Assessment the effects of different parameters to rate scour around single piers and pile groups: a review. Archives of Computational Methods in Engineering, 27(1), 183-197.
- Alemi, M., Pêgo, J. P., Okhravi, S., Maia, R. 2024. Numerical analysis of flow structure evolution during scour hole development: A case study of a pile-supported pier with partially buried pile cap. Modelling, 5(3), 884-900.
- Al-Shukur, A. H. K., Obeid, Z. H. 2016. Experimental study of bridge pier shape to minimize local scour. International Journal of Civil Engineering and Technology, 7(1), 162-171.
- Azevedo, M. L., Leite, F. C., Lima, M. M. C. L. 2014. Experimental study of scour around circular and elongated bridge piers with and without pier slot. In MEFTE 2014 (pp. 195-200). Portugal: Porto.
- Bara, M. K., Dulovičová, R., Velísková, Y., Farkas, C. 2024. Impacts of riverbed aggradation on groundwater regime in a lowland area. Journal of Hydrology and Hydromechanics, 72(2), 185-198.
- Baranwal, A., Das, B. S., Setia, B. 2023. A comparative study of scour around various shaped bridge pier. Engineering Research Express, 5(1), 015052. https://doi.org/10.1088/2631-8695/acbfa1
- Bestawy, A., Eltahawy, T., Alsaluli, A., Almaliki, A., Alqurashi, M. 2020. Reduction of local scour around a bridge pier by using different shapes of pier slots and collars. Water Supply, 20(3), 1006-1015. https://doi.org/10.2166/ws.2020.022
- Chen, J. G., Antonia, R. A., Zhou, Y. 2023. Relationship between coherent Reynolds shear stress and large-scale vortical structures. Physics of Fluids, 35(2). https://doi.org/10.1063/5.0141580
- Chiew, Y. M., Melville, B. W. 1989. Local scour at bridge piers with non-uniform sediment. Proceedings of the Institution of Civil Engineers, 87(2), 215-224.
- Debnath, K., Chaudhuri, S. 2012. Local scour around non-circular piers in clay–sand mixed cohesive sediment beds. Engineering Geology, 151, 1-14.
- Ettema, R., Kirkil, G., Muste, M. 2006. Similitude of large-scale turbulence in experiments on local scour at cylinders. Journal of Hydraulic Engineering, 132(1), 33-40.
- Ettema, R., Melville, B. W., Constantinescu, G. 2011. Evaluation of bridge scour research: Pier scour processes and predictions. Washington, DC, USA: Transportation Research Board of the National Academies.
- Ettema, R., Mostafa, E. A., Melville, B. W., Yassin, A. A. 1998. Local scour at skewed piers. Journal of Hydraulic Engineering, 124(7), 756-759.
- Fredsoe, J., Sumer, B. M. 2002. The mechanics of scour in the marine environment (Vol. 17). World Scientific Publishing Company.
- Ghorbani, B., Kells, J. A. 2008. Effect of submerged vanes on the scour occurring at a cylindrical pier. Journal of Hydraulic Research, 46(5), 610-619.
- Heidarpour, M., Afzalimehr, H., Izadinia, E. 2010. Reduction of local scour around bridge pier groups using collars. International Journal of Sediment Research, 25(4), 411-422.
- Jafari, R., Sui, J. 2024. Channel deformation around non-submerged spur dikes with different alignment angles under ice cover. Journal of Hydrology and Hydromechanics, 72(3), 372-385.
- Jalal, H. K., Hassan, W. H. 2020. Effect of bridge pier shape on depth of scour. In IOP conference series: materials science and engineering (Vol. 671, No. 1, p. 012001). IOP Publishing. https://doi.org/10.1088/1757-899X/671/1/012001
- Jiang, S., Yan, F., Zhang, J., Song, B. 2023. Multi-scale wake characteristics of the flow over a cylinder with different V-Groove numbers. Water, 15(4), 805. https://doi.org/10.3390/w15040805
- Khoshkonesh, A., Nsom, B., Okhravi, S., Dehrashid, F. A., Heidarian, P., DiFrancesco, S. 2024. Numerical investigation of dam break flow over erodible beds with diverse substrate level variations. Journal of Hydrology and Hydromechanics, 72(1), 80-94.
- Laguarda, L., Hickel, S. 2024. Low-frequency dynamics of turbulent recirculation bubbles. Physics of Fluids, 36(8). https://doi.org/10.1063/5.0227332
- Laursen, E. M. 1963. An analysis of relief bridge scour. Journal of the Hydraulics Division, 89(3), 93-118.
- Lee, W. L., Lu, C. W., Huang, C. K. 2021. Application of a single porous basket as a pier scour countermeasure. Water, 13(21), 3052. https://doi.org/10.3390/w13213052.
- Li, G., Sui, J., Sediqi, S. 2024. Turbulent flow structure around a single submerged angled spur dike under ice cover. Journal of Hydrology and Hydromechanics, 72(4), 522-537.
- Lima, M. M., Carvalho, E., Aleixo, R. 2018. LDV measurements of the flow induced by an elongated bridge pier: the fixed bed case. In Free Surface Flows and Transport Processes: 36th International School of Hydraulics (pp. 307-321). Springer International Publishing.
- Melville, B. W. 2000. Bridge Scour (Vol. 112). Water Resources Publications.
- Melville, B. W., Chiew, Y. M. 1999. Time scale for local scour at bridge piers. Journal of Hydraulic Engineering, 125(1), 59-65.
- Mohammed, T. A., Noor, M. J. M. M., Ghazali, A. H., Yusuf, B., Saed, K. 2007. Physical modeling of local scouring around bridge piers in erodable bed. Journal of King Saud University-Engineering Sciences, 19(2), 195-206.
- Nazari-Sharabian, M., Nazari-Sharabian, A., Karakouzian, M., Karami, M. 2020. Sacrificial piles as scour countermeasures in river bridges a numerical study using flow-3D. Civil Engineering Journal, 6(6), 1091.
- Negm, A. M., Moustafa, G. M., Abdalla, Y. M., Fathy, A. A. 2009. Optimal shape of collar to minimize local scour around bridge piers. Proc. of IWTC13, 12-15.
- Nortek AS. (2001). Velocimeter User Manual. Nortek AS, Rud, Norway.
- Okhravi, S., Gohari, S., Alemi, M., Maia, R. 2022. Effects of bed-material gradation on clear water scour at single and group of piles. Journal of Hydrology and Hydromechanics, 70(1), 114-127.
- Okhravi, S., Gohari, S., Alemi, M., & Maia, R. 2023. Numerical modeling of local scour of non-uniform graded sediment for two arrangements of pile groups. International Journal of Sediment Research, 38(4), 597-614.
- Okhravi, S., Velísková, Y., Gohari, S., Fazeres-Ferradosa, T. 2024. Surface bed characteristics of circular pier scouring in different sediment mixtures under flow shallowness variations. In River Flow 2022 (pp. 533-541), 11th International Conference on Fluvial Hydraulics, Kingston and Ottawa, Canada, 8-10th November 2022, CRC Press.
- Pope, S. B. 2001. Turbulent flows. Measurement Science and Technology, 12(11), 2020-2021.
- Raudkivi, A. J., Ettema, R. 1983. Clear-water scour at cylindrical piers. Journal of Hydraulic Engineering, 109(3), 338-350.
- Roy, C. (2017). Effect of bridge pier geometry on local scouring. International Journal of Earth Science and Engineering, 10(2), 374-377.
- Salehi, S., Azimi, A. H., Heidarpour, M. 2024. Hydraulic properties and local scour downstream of permeable grade-control structures. Journal of Irrigation and Drainage Engineering, 150(6), 04024028. https://doi.org/10.1061/JIDEDH.IRENG-10364
- Sediqi, S., Sui, J., Li, G., Dziedzic, M. 2024. Characteristics of turbulent flow around bridge abutments in the presence of vegetation in channel bed under ice-covered flow conditions. Cold Regions Science and Technology, 221, 104172. https://doi.org/10.1016/j.coldregions.2024.104172
- Singh, N. B., Devi, T. T., Kumar, B. 2022. The local scour around bridge piers-a review of remedial techniques. ISH Journal of Hydraulic Engineering, 28, 527-540.
- Taylor, Z. J., Kopp, G. A., Gurka, R. 2011. Effects of leading edge geometry on the flow around elongated bluff bodies. In Seventh International Symposium on Turbulence and Shear Flow Phenomena. Begel House Inc.
- Vijayasree, B. A., Eldho, T. I., Mazumder, B. S., Ahmad, N. 2019. Influence of bridge pier shape on flow field and scour geometry. International Journal of River Basin Management, 17(1), 109-129.
- Wang, C., Liang, F., Yu, X. 2017. Experimental and numerical investigations on the performance of sacrificial piles in reducing local scour around pile groups. Natural Hazards, 85, 1417-1435.
- Wu, P., Hirshfield, F., Sui, J. Y. 2015. Local scour around bridge abutments under ice covered condition–an experimental study. International Journal of Sediment Research, 30(1), 39-47.