Have a personal or library account? Click to login
Application of spatiotemporal velocity method in concrete canals with vegetation patch Cover

Application of spatiotemporal velocity method in concrete canals with vegetation patch

Open Access
|Mar 2025

References

  1. Ackers, P., 1958. Hydraulics Research Paper: Resistance of fluids flowing in channels and ducts. HMSO., 1, 1–39.
  2. Afzalimehr, H., Anctil, F., 2000. Accelerating shear velocity in gravel-bed channels. Hydrological sciences journal, 45(1), 113-124.
  3. Afzalimehr, H., Rennie, C.D., 2009. Determination of bed shear stress using boundary layer parameters in a gravel-bed river. Hydrological Sciences Journal, 54(1), 147-159.
  4. Afzalimehr, H., Abdolhosseini, M., Singh, V. J., 2010. Hydraulic geometry of stable channels, accepted in Journal of Hydrologic Engineering ASCE, 15 (10) 859-864.
  5. Afzalimehr, H., Gallichand, J., Sui, J., Bagheri, E., 2011. Field investigation on friction factor in mountainous cobble-bed and boulder-bed Rivers. International Journal of Sediment Research 26(2), 210-221.
  6. Afzalimehr, H., Maddahi, MR., Sui. J., Rahimpour, M., 2019. Impacts of vegetation over bedforms on flow characteristics in gravel-bed rivers. J. Hydrodyn., 31, 986–998.
  7. Afzalimehr, H., Dey S., 2009. Influence of Bank Vegetation and Gravel Bed on Velocity and Reynolds Stress Distributions. International Journal of Sediment Research, 24(2), 236–246.
  8. Barenblatt, G.I., 1982. Similarity and Self-Similarity and Intermediate asymptotics. Consultants Bureau, New York, N.Y.
  9. Barahimi, M., Sui J., 2023. Effects of Submerged Vegetation Arrangement Patterns and Density on Flow Structure. Water 2023, 15(1), 176; https://doi.org/10.3390/w15010176.
  10. Barahimi, M., Afzalimehr, H., 2019. Effect of submerged vegetation density on flow under favorable pressure gradient. SN Appl Sci., 1, 1–12.
  11. Barahimi, M., & Sui, J., 2024a. Deformation of vegetated channel bed under ice-covered flow conditions. Journal of Hydrology, 636, 131280. https://doi.org/10.1016/j.jhydrol.2024.131280
  12. Barahimi, M., Sui, J., 2024b. Flow structure and shear stress in the presence of both ice cover on water surface and leafless vegetation in channel bed. Journal of Hydrodynamics, 36(2), 340–354. https://doi.org/10.1007/s42241-024-0021-y
  13. Cai, Z., Xie, J., Chen, Y., Yang, Y., Wang, C., & Wang, J., 2024. Rigid Vegetation Affects Slope Flow Velocity. Water, 16(16), Article 16. https://doi.org/10.3390/w16162240
  14. De Serio, F., Ben Meftah, M., Mossa, M., & Termini, D., 2018. Experimental investigation on dispersion mechanisms in rigid and flexible vegetated beds. Advances in Water Resources, 120, 98–113. https://doi.org/10.1016/j.advwatres.2017.08.005
  15. Chow, V.T., 1959. Determination of hydrologic frequency factor. Journal of the Hydraulics Division., 85, 93–98.
  16. Clauser, F.H., 1954. Turbulent boundary layers in adverse pressure gradients. J Aeronaut Sci., 21, 91–108.
  17. Cooper, J.R., Tait, S.J., 2010. Spatially representative velocity measurement over water-worked gravel beds. Water Resour Res., 46, 1–15.
  18. Coscarella, F., Penna, N., Ferrante, A.P., Gualtieri, P., Gaudio, R., 2021. Turbulent flow through random vegetation on a rough bed. Water., 13, 2564.
  19. Dey, S., 2024. Fluvial Hydrodynamics: Hydrodynamic and sediment transport phenomena. Springer verlag, Berlin.
  20. Dey, S., Das, R., 2012. Gravel-bed hydrodynamics: Double-averaging approach. J Hydraul Eng., 138, 707–725.
  21. Emadzadeh, A., Chiew, Y.M., Afzalimehr, H., 2010. Effect of accelerating and decelerating flows on incipient motion in sand bed streams. Adv Water Resour., 33, 1094–1104.
  22. Fazlollahi, A., Afzalimehr, H., 2013. Evaluation of the validity of double-averaging for wall law application on pool. J Hydraulics., 8, 19–28 (In Persian)
  23. Franca, M.J., Ferreira, R.M.L., Cardoso, A.H., Lemmin, U., 2010. Double-average methodology applied to turbulent gravel-bed river flows. River Flow 2010, Dittrich, Koll, Aberle & Geisenhainer (eds), Bundesanstalt für Wasserbau., 59–65.
  24. Gibson, A.F., 1909. On the depression of the filament of maximum velocity in a stream flowing through an open channel. Proc R Soc A., 82, 149–159.
  25. Hu, Z., Lei, J., Liu, C., Nepf, H., 2018. Wake structure and sediment deposition behind models of submerged vegetation with and without flexible leaves. Adv Water Resour., 118, 28–38.
  26. Kironoto, B.A., Graf, W.H., 1995. Turbulence characteristics in rough non-uniform open-channel flow. Proceedings of the Institution of Civil Engineers - Water, Maritime and Energy., 112, 336–348.
  27. Keulegan, G.H., 1938. Laws of turbulent flow in open channels. Gaithersburg, MD, USA: National Bureau of Standards.
  28. Kummu, M., 2002. Roughness characteristics and velocity profile in vegetated and non-vegetated channel. Master of Science thesis, Helsinki University of Technology.
  29. Li, G., Sui, J., Sediqi, S., 2024. Turbulent flow structure around submerged angled spur dikes under ice cover. J. Hydrol. Hydromech., 72(4), 522 – 537. doi: https://doi.org/10.2478/johh-2024-0029
  30. Liu, C., Hu, Z., Lei, J., Nepf, H., 2018. Vortex structure and sediment deposition in the wake behind a finite patch of model submerged vegetation. J Hydraul Eng., 144, 04017065.
  31. Liu, X.D., Tang, L.C., Han, Y., Chen, J., Yang, S.Q., 2019. Experimental study on flow resistance over rigid vegetated channel. IEEE Access., 7, 93974–93985.
  32. Manes, C., Pokrajac, D., McEwan, I., 2007. Double-averaged open-channel flows with small relative submergence. J Hydraul Eng., 133, 896–904.
  33. Naderi, M., Afzalimehr, H., Dehghan, A., Amini, A., 2022. Investigating Velocity Profiles in Rivers with Submerged Vegetation Patch in the Bed and Emergent in the Bank (Case Study: Fars and Bushehr Rivers). Iran J Soil Water Res., 53, 513–526.
  34. Nikora, V., Goring, D., McEwan, I., Griffiths, G., 2001. Spatially averaged open-channel flow over rough bed. J Hydraul Eng., 127, 123–133.
  35. Nosrati, K., Afzalimehr, H., Sui, J., 2022. Drag coefficient of submerged flexible vegetation patches in gravel bed rivers. Water., 14, 743.
  36. Padhi, E., Dey, S., Penna, N., Gaudio, R., 2020. Conditional turbulence characteristics in water-worked and screeded gravel-bed flows. J Hydraul Eng., 146, 04019052.
  37. Padhi, E., Penna, N., Dey, S., Gaudio, R., 2018. Hydrodynamics of water-worked and screeded gravel beds: A comparative study. Phys Fluids., 30, 085105.
  38. Parvizi, P., Afzalimehr, H., Sui,R., Raeisifar, H.R., Eftekhari, A.R., 2023. Characteristics of Shallow Flows in a Vegetated Pool—An Experimental Study. Water., 15, 205.
  39. Penna, N., Coscarella, F., D’Ippolito, A., Gaudio, R., 2022a. Effects of fluvial instability on the bed morphology in vegetated channels. Environ Fluid Mech., 22, 619–644.
  40. Penna, N., Padhi, E., Dey, S., Gaudio, R., 2020. Structure functions and invariants of the anisotropic Reynolds stress tensor in turbulent flows on water-worked gravel beds. Phys Fluids 32, 055106.
  41. Penna, N., Padhi, E., Dey, S., Gaudio, R., 2022b. Response of Reynolds stresses and scaling behavior of high-order structure functions to a water-worked gravel-bed surface and its implication on sediment transport. Int J Sediment Res 37, 1–13.
  42. Raupach, M.R., Coppin, P.A., Legg, B.J., 1986. Experiments on scalar dispersion within a model plant canopy part I: The turbulence structure. Bound.-Layer Meteorol., 35, 21–52.
  43. Sediqi, S., Sui, J., Li, G., & Dziedzic, M., 2024a. Characteristics of turbulent flow around bridge abutments in the presence of vegetation in channel bed under ice-covered flow conditions. Cold Regions Science and Technology, 221, 104172.
  44. Sediqi, S., Sui, J., & Li, G., 2024b. Effect of submerged vegetation on hydraulic resistance of ice-covered flows. International Journal of Sediment Research, S1001627924001045.
  45. Shahiri Tabarestani, E., Afzalimehr, H., Pham, Q.B., 2021. Validation of double averaged velocity method in a variable width river. Earth Sci Inform., 14, 2265–2278.
  46. Smith, J.D., McLean, S.R.,1977. Spatially averaged flow over a wavy surface. J Geophys Res., 82, 1735–1746.
  47. Song, T., Graf, W.H., 1996. Velocity and Turbulence Distribution in Unsteady Open-Channel Flows. J Hydraul Eng., 122, 141.
  48. Wang J. Liu J., Sun Y., Li J., Cao Z., 2024. Flow resistance of emergent rigid vegetation in steady flow, J. Hydrol. Hydromech, 72(2), 2024, 207-222. doi: 10.2478/johh-2024-0010
  49. White, B.L., Nepf, H.M., 2007. Shear instability and coherent structures in shallow flow adjacent to a porous layer. J Fluid Mech., 593, 1–32.
  50. Xu, Y., Esposito, C.R., Beltrán-Burgos, M., Nepf, H.M., 2022. Competing effects of vegetation density on sedimentation in deltaic marshes. Nat Commun., 13, 4641.
DOI: https://doi.org/10.2478/johh-2025-0009 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 108 - 120
Submitted on: Jul 30, 2024
|
Accepted on: Jan 18, 2025
|
Published on: Mar 5, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Masoud Naderi, Shabnam Vakili, Hossein Afzalimehr, Nadia Penna, Roberto Gaudio, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.