Have a personal or library account? Click to login
Integrating machine learning and empirical approaches for scour depth estimation at sluice gates: evaluating tree-based models, hyperparameter tuning, and proposing new formulas Cover

Integrating machine learning and empirical approaches for scour depth estimation at sluice gates: evaluating tree-based models, hyperparameter tuning, and proposing new formulas

By: Xuan-Hien Le and  Le Thi Thu Hien  
Open Access
|Mar 2025

References

  1. Aamir, M., Ahmad, Z., 2016. Review of literature on local scour under plane turbulent wall jets. Physics of Fluids, 28(10). https://doi.org/10.1063/1.4964659
  2. Aamir, M., Ahmad, Z., 2017. Prediction of Local Scour Depth Downstream of an Apron Under Wall Jets, In Proceedings of Development of Water Resources in India, Cham; pp. 375-385. 10.1007/978-3-319-55125-8_32
  3. Aamir, M., Ahmad, Z., 2019. Estimation of maximum scour depth downstream of an apron under submerged wall jets. J. Hydroinformatics, 21(4): 523-540. https://doi.org/10.2166/hydro.2019.008
  4. Aamir, M., Ahmad, Z., Pandey, M., Khan, M.A., Aldrees, A., Mohamed, A., 2022. The Effect of Rough Rigid Apron on Scour Downstream of Sluice Gates. Water, 14(14): 2223. https://doi.org/10.3390/w14142223
  5. Aderibigbe, O., Rajaratnam, N., 1998. Effect of Sediment Gradation on Erosion by Plane Turbulent Wall Jets. J. Hydraul. Eng., 124(10): 1034-1042. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:10(1034)
  6. Aderibigbe, O.O., Rajaratnam, N., 1996. Erosion of loose beds by submerged circular impinging vertical turbulent jets. Journal of Hydraulic Research, 34(1): 19-33. https://doi.org/10.1080/00221689609498762
  7. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M., 2019. Optuna: A Next-generation Hyperparameter Optimization Framework, In Proceedings of The 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA; pp. 2623–2631. 10.1145/3292500.3330701
  8. Ali, H.M., El Gendy, M.M., Mirdan, A.M.H., Ali, A.A.M., Abdelhaleem, F.S.F., 2014. Minimizing downstream scour due to submerged hydraulic jump using corrugated aprons. Ain Shams Eng. J., 5(4): 1059-1069. https://doi.org/10.1016/j.asej.2014.07.007
  9. Ali, K.H.M., Neyshaboury, A.A.S., 1991. Localized scour downstream of a deeply submerged horizontal jet. Proceedings of the Institution of Civil Engineers, 91(1): 1-18. https://doi.org/10.1680/iicep.1991.13579
  10. Azamathulla, H.M., Ghani, A.A., 2011. ANFIS-Based Approach for Predicting the Scour Depth at Culvert Outlets. J. Pipeline Syst. Eng. Pract., 2(1): 35-40. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000066
  11. Azmathullah, H.M.D., Deo, M.C., Deolalikar, P.B., 2006. Estimation of scour below spillways using neural networks. Journal of Hydraulic Research, 44(1): 61-69. https://doi.org/10.1080/00221686.2006.9521661
  12. Balachandar, R., Kells, J.A., Thiessen, R.J., 2000. The effect of tailwater depth on the dynamics of local scour. Can. J. Civ. Eng., 27(1): 138-150. https://doi.org/10.1139/l99-061
  13. Bateni, S.M., Borghei, S.M., Jeng, D.S., 2007. Neural network and neuro-fuzzy assessments for scour depth around bridge piers. Eng. Appl. Artif. Intell., 20(3): 401-414. https://doi.org/10.1016/j.engappai.2006.06.012
  14. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B., 2011. Algorithms for Hyper-Parameter Optimization, In Proceedings of Advances in Neural Information Processing Systems, 2011.
  15. Breusers, H.N.C., Raudkivi, A.J., 1991. Scouring. Taylor & Francis, 52 Vanderbilt Avenue, New York, 152 pp.
  16. Chatterjee, S.S., Ghosh, S.N., Chatterjee, M., 1994. Local Scour due to Submerged Horizontal Jet. J. Hydraul. Eng., 120(8): 973-992. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:8(973)
  17. Dey, S., Sarkar, A., 2006. Scour Downstream of an Apron Due to Submerged Horizontal Jets. J. Hydraul. Eng., 132(3): 246-257. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:3(246)
  18. Dey, S., Westrich, B., 2003. Hydraulics of Submerged Jet Subject to Change in Cohesive Bed Geometry. J. Hydraul. Eng., 129(1): 44-53. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:1(44)
  19. Eghbalzadeh, A., Hayati, M., Rezaei, A., Javan, M., 2018. Prediction of equilibrium scour depth in uniform non-cohesive sediments downstream of an apron using computational intelligence. Eur. J. Environ. Civ. Eng., 22(1): 28-41. https://doi.org/10.1080/19648189.2016.1179677
  20. Farooq, R., Ghumman, A.R., 2019. Impact Assessment of Pier Shape and Modifications on Scouring around Bridge Pier. Water, 11(9): 1761. https://doi.org/10.3390/w11091761
  21. Firat, M., Gungor, M., 2009. Generalized Regression Neural Networks and Feed Forward Neural Networks for prediction of scour depth around bridge piers. Adv. Eng. Softw., 40(8): 731-737. https://doi.org/10.1016/j.advengsoft.2008.12.001
  22. Geurts, P., Ernst, D., Wehenkel, L., 2006. Extremely randomized trees. Mach. Learn., 63(1): 3-42. https://doi.org/10.1007/s10994-006-6226-1
  23. Guan, D., Liu, J., Chiew, Y.-M., Hong, J.-H., Cheng, L., 2023. A comparison between artificial neural network algorithms and empirical equations applied to submerged weir scour evolution prediction. International Journal of Sediment Research, 38(1): 105-114. https://doi.org/10.1016/j.ijsrc.2022.07.001
  24. Guven, A., Azamathulla, H.M., 2012. Gene-expression programming for flip-bucket spillway scour. Water Sci. Technol., 65(11): 1982-1987. https://doi.org/10.2166/wst.2012.100
  25. Guven, A., Gunal, M., 2008. Genetic Programming Approach for Prediction of Local Scour Downstream of Hydraulic Structures. J. Irrig. Drain. Eng., 134(2): 241-249. https://doi.org/10.1061/(ASCE)0733-9437(2008)134:2(241)
  26. Hamidifar, H., Omid, M.H., Nasrabadi, M., 2011. Scour Downstream of a Rough Rigid Apron. World Applied Sciences Journal 14(8): 1169-1178.
  27. Hien, L.X., Hien, L.T.T., Ho, H.V., Lee, G., 2024. Benchmarking the performance and uncertainty of machine learning models in estimating scour depth at sluice outlets. J. Hydroinformatics: jh2024297. https://doi.org/10.2166/hydro.2024.297
  28. Hopfinger, E.J., Kurniawan, A., Graf, W.H., Lemmin, U., 2004. Sediment erosion by Görtler vortices: the scour-hole problem. J. Fluid Mech., 520: 327-342. https://doi.org/10.1017/S0022112004001636
  29. Kambekar, A.R., Deo, M.C., 2003. Estimation of pile group scour using neural networks. Applied Ocean Research, 25(4): 225-234. https://doi.org/10.1016/j.apor.2003.06.001
  30. Karbasi, M., Azamathulla, H.M., 2017. Prediction of scour caused by 2D horizontal jets using soft computing techniques. Ain Shams Eng. J., 8(4): 559-570. https://doi.org/10.1016/j.asej.2016.04.001
  31. Ke, G. et al., 2017. LightGBM: a highly efficient gradient boosting decision tree, In Proceedings of The 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA; pp. 3149–3157
  32. Kells, J.A., Balachandar, R., Hagel, K.P., 2001. Effect of grain size on local channel scour below a sluice gate. Can. J. Civ. Eng., 28(3): 440-451. https://doi.org/10.1139/l01-012
  33. Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, In Proceedings of ICNN'95 - International Conference on Neural Networks, 27 Nov.-1 Dec. 1995; pp. 1942-1948 vol.4. 10.1109/ICNN.1995.488968
  34. Lantz, W.D., Crookston, B.M., Palermo, M., 2022. Evolution of local scour downstream of Type A PK weir in non-cohesive sediments. Journal of Hydrology and Hydromechanics, 70(1): 103-113. https://doi.org/10.2478/johh-2021-0035
  35. Laucelli, D., Giustolisi, O., 2011. Scour depth modelling by a multi-objective evolutionary paradigm. Environ. Modelling Soft., 26(4): 498-509. https://doi.org/10.1016/j.envsoft.2010.10.013
  36. Le, H.T.T., Nguyen, C.V., Le, D.-H., 2022. Numerical study of sediment scour at meander flume outlet of boxed culvert diversion work. PLOS ONE, 17(9): e0275347. https://doi.org/10.1371/journal.pone.0275347
  37. Le, X.-H., Huynh, T.T., Song, M., Lee, G., 2024. Quantifying Predictive Uncertainty and Feature Selection in River Bed Load Estimation: A Multi-Model Machine Learning Approach with Particle Swarm Optimization. Water, 16(14): 1945. https://doi.org/10.3390/w16141945
  38. Le, X.-H., Le, T.T.H., 2024. Predicting maximum scour depth at sluice outlet: a comparative study of machine learning models and empirical equations. Environ. Res. Commun., 6(1): 015010. https://doi.org/10.1088/2515-7620/ad1f94
  39. Lee, T.L., Jeng, D.S., Zhang, G.H., Hong, J.H., 2007. Neural Network Modeling for Estimation of Scour Depth Around Bridge Piers. J. Hydrodyn., 19(3): 378-386. https://doi.org/10.1016/S1001-6058(07)60073-0
  40. Lim, S.-Y., Yu, G., 2002. Scouring Downstream of Sluice Gate, In Proceedings of First International Conference on Scour of Foundations (ICSF-1), Texas A&M University, College Station, Texas, USA, November 17-20, 2002; pp. 395-409.
  41. Manes, C., Brocchini, M., 2015. Local scour around structures and the phenomenology of turbulence. J. Fluid Mech., 779: 309-324. https://doi.org/10.1017/jfm.2015.389
  42. Melville, B.W., 2014. Scour at Various Hydraulic Structures: Sluice Gates, Submerged Bridges and Low Weirs. Australas. J. Water Resour., 18(2): 101-117. https://doi.org/10.1080/13241583.2014.11465444
  43. Mutlu Sumer, B., 2007. Mathematical modelling of scour: A review. Journal of Hydraulic Research, 45(6): 723-735. https://doi.org/10.1080/00221686.2007.9521811
  44. Najafzadeh, M., Barani, G.A., 2011. Comparison of group method of data handling based genetic programming and back propagation systems to predict scour depth around bridge piers. Scientia Iranica, 18(6): 1207-1213. https://doi.org/10.1016/j.scient.2011.11.017
  45. Najafzadeh, M., Lim, S.Y., 2015. Application of improved neuro-fuzzy GMDH to predict scour depth at sluice gates. Earth Sci. Inform., 8(1): 187-196. https://doi.org/10.1007/s12145-014-0144-8
  46. Najafzadeh, M., Rezaie Balf, M., Rashedi, E., 2016. Prediction of maximum scour depth around piers with debris accumulation using EPR, MT, and GEP models. J. Hydroinformatics, 18(5): 867-884. https://doi.org/10.2166/hydro.2016.212
  47. Palermo, M., Pagliara, S., Roy, D., 2021. Effect of debris accumulation on scour evolution at bridge pier in bank proximity. Journal of Hydrology and Hydromechanics, 69(1): 108-118. https://doi.org/10.2478/johh-2020-0041
  48. Parsaie, A., Haghiabi, A.H., Moradinejad, A., 2019. Prediction of Scour Depth below River Pipeline using Support Vector Machine. KSCE J. Civ. Eng., 23(6): 2503-2513. https://doi.org/10.1007/s12205-019-1327-0
  49. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A., 2018. CatBoost: unbiased boosting with categorical features. ArXiv. https://doi.org/10.48550/arXiv.1706.09516
  50. Qaderi, K., Javadi, F., Madadi, M.R., Ahmadi, M.M., 2021. A comparative study of solo and hybrid data driven models for predicting bridge pier scour depth. Mar. Georesour. Geotechnol., 39(5): 589-599. https://doi.org/10.1080/1064119X.2020.1735589
  51. Sarathi, P., Faruque, M.A.A., Balachandar, R., 2008. Influence of tailwater depth, sediment size and densimetric Froude number on scour by submerged square wall jets. Journal of Hydraulic Research, 46(2): 158-175. https://doi.org/10.1080/00221686.2008.9521853
  52. Sarkar, A., Dey, S., 2005. Scour downstream of aprons caused by sluices. Proceedings of the Institution of Civil Engineers - Water Management, 158(2): 55-64. https://doi.org/10.1680/wama.2005.158.2.55
  53. Seyedian, S.M., Kisi, O., 2024. Uncertainty analysis of discharge coefficient predicted for rectangular side weir using machine learning methods. Journal of Hydrology and Hydromechanics, 72(1): 113-130. https://doi.org/10.2478/johh-2023-0043
  54. Sharafati, A., Haghbin, M., Motta, D., Yaseen, Z.M., 2021. The Application of Soft Computing Models and Empirical Formulations for Hydraulic Structure Scouring Depth Simulation: A Comprehensive Review, Assessment and Possible Future Research Direction. Arch. Comput. Methods Eng., 28(2): 423-447. https://doi.org/10.1007/s11831-019-09382-4
  55. Verma, D.V.S., Goel, A., 2005. Scour Downstream of a Sluice Gate. ISH J. Hydraul. Eng., 11(3): 57-65. https://doi.org/10.1080/09715010.2005.10514801
  56. Virtanen, P. et al., 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17(3): 261-272. https://doi.org/10.1038/s41592-019-0686-2
  57. Watanabe, S., 2023. Tree-Structured Parzen Estimator: Understanding Its Algorithm Components and Their Roles for Better Empirical Performance. ArXiv. https://doi.org/10.48550/arXiv.2304.11127
  58. Xie, C., Lim, S.-Y., 2015. Effects of Jet Flipping on Local Scour Downstream of a Sluice Gate. J. Hydraul. Eng., 141(4): 04014088. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000983
DOI: https://doi.org/10.2478/johh-2025-0004 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 51 - 64
Submitted on: Aug 28, 2024
|
Accepted on: Dec 8, 2024
|
Published on: Mar 5, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Xuan-Hien Le, Le Thi Thu Hien, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.