References
- Aamir, M., Ahmad, Z., 2016. Review of literature on local scour under plane turbulent wall jets. Physics of Fluids, 28(10). https://doi.org/10.1063/1.4964659
- Aamir, M., Ahmad, Z., 2017. Prediction of Local Scour Depth Downstream of an Apron Under Wall Jets, In Proceedings of Development of Water Resources in India, Cham; pp. 375-385. 10.1007/978-3-319-55125-8_32
- Aamir, M., Ahmad, Z., 2019. Estimation of maximum scour depth downstream of an apron under submerged wall jets. J. Hydroinformatics, 21(4): 523-540. https://doi.org/10.2166/hydro.2019.008
- Aamir, M., Ahmad, Z., Pandey, M., Khan, M.A., Aldrees, A., Mohamed, A., 2022. The Effect of Rough Rigid Apron on Scour Downstream of Sluice Gates. Water, 14(14): 2223. https://doi.org/10.3390/w14142223
- Aderibigbe, O., Rajaratnam, N., 1998. Effect of Sediment Gradation on Erosion by Plane Turbulent Wall Jets. J. Hydraul. Eng., 124(10): 1034-1042. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:10(1034)
- Aderibigbe, O.O., Rajaratnam, N., 1996. Erosion of loose beds by submerged circular impinging vertical turbulent jets. Journal of Hydraulic Research, 34(1): 19-33. https://doi.org/10.1080/00221689609498762
- Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M., 2019. Optuna: A Next-generation Hyperparameter Optimization Framework, In Proceedings of The 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA; pp. 2623–2631. 10.1145/3292500.3330701
- Ali, H.M., El Gendy, M.M., Mirdan, A.M.H., Ali, A.A.M., Abdelhaleem, F.S.F., 2014. Minimizing downstream scour due to submerged hydraulic jump using corrugated aprons. Ain Shams Eng. J., 5(4): 1059-1069. https://doi.org/10.1016/j.asej.2014.07.007
- Ali, K.H.M., Neyshaboury, A.A.S., 1991. Localized scour downstream of a deeply submerged horizontal jet. Proceedings of the Institution of Civil Engineers, 91(1): 1-18. https://doi.org/10.1680/iicep.1991.13579
- Azamathulla, H.M., Ghani, A.A., 2011. ANFIS-Based Approach for Predicting the Scour Depth at Culvert Outlets. J. Pipeline Syst. Eng. Pract., 2(1): 35-40. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000066
- Azmathullah, H.M.D., Deo, M.C., Deolalikar, P.B., 2006. Estimation of scour below spillways using neural networks. Journal of Hydraulic Research, 44(1): 61-69. https://doi.org/10.1080/00221686.2006.9521661
- Balachandar, R., Kells, J.A., Thiessen, R.J., 2000. The effect of tailwater depth on the dynamics of local scour. Can. J. Civ. Eng., 27(1): 138-150. https://doi.org/10.1139/l99-061
- Bateni, S.M., Borghei, S.M., Jeng, D.S., 2007. Neural network and neuro-fuzzy assessments for scour depth around bridge piers. Eng. Appl. Artif. Intell., 20(3): 401-414. https://doi.org/10.1016/j.engappai.2006.06.012
- Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B., 2011. Algorithms for Hyper-Parameter Optimization, In Proceedings of Advances in Neural Information Processing Systems, 2011.
- Breusers, H.N.C., Raudkivi, A.J., 1991. Scouring. Taylor & Francis, 52 Vanderbilt Avenue, New York, 152 pp.
- Chatterjee, S.S., Ghosh, S.N., Chatterjee, M., 1994. Local Scour due to Submerged Horizontal Jet. J. Hydraul. Eng., 120(8): 973-992. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:8(973)
- Dey, S., Sarkar, A., 2006. Scour Downstream of an Apron Due to Submerged Horizontal Jets. J. Hydraul. Eng., 132(3): 246-257. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:3(246)
- Dey, S., Westrich, B., 2003. Hydraulics of Submerged Jet Subject to Change in Cohesive Bed Geometry. J. Hydraul. Eng., 129(1): 44-53. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:1(44)
- Eghbalzadeh, A., Hayati, M., Rezaei, A., Javan, M., 2018. Prediction of equilibrium scour depth in uniform non-cohesive sediments downstream of an apron using computational intelligence. Eur. J. Environ. Civ. Eng., 22(1): 28-41. https://doi.org/10.1080/19648189.2016.1179677
- Farooq, R., Ghumman, A.R., 2019. Impact Assessment of Pier Shape and Modifications on Scouring around Bridge Pier. Water, 11(9): 1761. https://doi.org/10.3390/w11091761
- Firat, M., Gungor, M., 2009. Generalized Regression Neural Networks and Feed Forward Neural Networks for prediction of scour depth around bridge piers. Adv. Eng. Softw., 40(8): 731-737. https://doi.org/10.1016/j.advengsoft.2008.12.001
- Geurts, P., Ernst, D., Wehenkel, L., 2006. Extremely randomized trees. Mach. Learn., 63(1): 3-42. https://doi.org/10.1007/s10994-006-6226-1
- Guan, D., Liu, J., Chiew, Y.-M., Hong, J.-H., Cheng, L., 2023. A comparison between artificial neural network algorithms and empirical equations applied to submerged weir scour evolution prediction. International Journal of Sediment Research, 38(1): 105-114. https://doi.org/10.1016/j.ijsrc.2022.07.001
- Guven, A., Azamathulla, H.M., 2012. Gene-expression programming for flip-bucket spillway scour. Water Sci. Technol., 65(11): 1982-1987. https://doi.org/10.2166/wst.2012.100
- Guven, A., Gunal, M., 2008. Genetic Programming Approach for Prediction of Local Scour Downstream of Hydraulic Structures. J. Irrig. Drain. Eng., 134(2): 241-249. https://doi.org/10.1061/(ASCE)0733-9437(2008)134:2(241)
- Hamidifar, H., Omid, M.H., Nasrabadi, M., 2011. Scour Downstream of a Rough Rigid Apron. World Applied Sciences Journal 14(8): 1169-1178.
- Hien, L.X., Hien, L.T.T., Ho, H.V., Lee, G., 2024. Benchmarking the performance and uncertainty of machine learning models in estimating scour depth at sluice outlets. J. Hydroinformatics: jh2024297. https://doi.org/10.2166/hydro.2024.297
- Hopfinger, E.J., Kurniawan, A., Graf, W.H., Lemmin, U., 2004. Sediment erosion by Görtler vortices: the scour-hole problem. J. Fluid Mech., 520: 327-342. https://doi.org/10.1017/S0022112004001636
- Kambekar, A.R., Deo, M.C., 2003. Estimation of pile group scour using neural networks. Applied Ocean Research, 25(4): 225-234. https://doi.org/10.1016/j.apor.2003.06.001
- Karbasi, M., Azamathulla, H.M., 2017. Prediction of scour caused by 2D horizontal jets using soft computing techniques. Ain Shams Eng. J., 8(4): 559-570. https://doi.org/10.1016/j.asej.2016.04.001
- Ke, G. et al., 2017. LightGBM: a highly efficient gradient boosting decision tree, In Proceedings of The 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA; pp. 3149–3157
- Kells, J.A., Balachandar, R., Hagel, K.P., 2001. Effect of grain size on local channel scour below a sluice gate. Can. J. Civ. Eng., 28(3): 440-451. https://doi.org/10.1139/l01-012
- Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, In Proceedings of ICNN'95 - International Conference on Neural Networks, 27 Nov.-1 Dec. 1995; pp. 1942-1948 vol.4. 10.1109/ICNN.1995.488968
- Lantz, W.D., Crookston, B.M., Palermo, M., 2022. Evolution of local scour downstream of Type A PK weir in non-cohesive sediments. Journal of Hydrology and Hydromechanics, 70(1): 103-113. https://doi.org/10.2478/johh-2021-0035
- Laucelli, D., Giustolisi, O., 2011. Scour depth modelling by a multi-objective evolutionary paradigm. Environ. Modelling Soft., 26(4): 498-509. https://doi.org/10.1016/j.envsoft.2010.10.013
- Le, H.T.T., Nguyen, C.V., Le, D.-H., 2022. Numerical study of sediment scour at meander flume outlet of boxed culvert diversion work. PLOS ONE, 17(9): e0275347. https://doi.org/10.1371/journal.pone.0275347
- Le, X.-H., Huynh, T.T., Song, M., Lee, G., 2024. Quantifying Predictive Uncertainty and Feature Selection in River Bed Load Estimation: A Multi-Model Machine Learning Approach with Particle Swarm Optimization. Water, 16(14): 1945. https://doi.org/10.3390/w16141945
- Le, X.-H., Le, T.T.H., 2024. Predicting maximum scour depth at sluice outlet: a comparative study of machine learning models and empirical equations. Environ. Res. Commun., 6(1): 015010. https://doi.org/10.1088/2515-7620/ad1f94
- Lee, T.L., Jeng, D.S., Zhang, G.H., Hong, J.H., 2007. Neural Network Modeling for Estimation of Scour Depth Around Bridge Piers. J. Hydrodyn., 19(3): 378-386. https://doi.org/10.1016/S1001-6058(07)60073-0
- Lim, S.-Y., Yu, G., 2002. Scouring Downstream of Sluice Gate, In Proceedings of First International Conference on Scour of Foundations (ICSF-1), Texas A&M University, College Station, Texas, USA, November 17-20, 2002; pp. 395-409.
- Manes, C., Brocchini, M., 2015. Local scour around structures and the phenomenology of turbulence. J. Fluid Mech., 779: 309-324. https://doi.org/10.1017/jfm.2015.389
- Melville, B.W., 2014. Scour at Various Hydraulic Structures: Sluice Gates, Submerged Bridges and Low Weirs. Australas. J. Water Resour., 18(2): 101-117. https://doi.org/10.1080/13241583.2014.11465444
- Mutlu Sumer, B., 2007. Mathematical modelling of scour: A review. Journal of Hydraulic Research, 45(6): 723-735. https://doi.org/10.1080/00221686.2007.9521811
- Najafzadeh, M., Barani, G.A., 2011. Comparison of group method of data handling based genetic programming and back propagation systems to predict scour depth around bridge piers. Scientia Iranica, 18(6): 1207-1213. https://doi.org/10.1016/j.scient.2011.11.017
- Najafzadeh, M., Lim, S.Y., 2015. Application of improved neuro-fuzzy GMDH to predict scour depth at sluice gates. Earth Sci. Inform., 8(1): 187-196. https://doi.org/10.1007/s12145-014-0144-8
- Najafzadeh, M., Rezaie Balf, M., Rashedi, E., 2016. Prediction of maximum scour depth around piers with debris accumulation using EPR, MT, and GEP models. J. Hydroinformatics, 18(5): 867-884. https://doi.org/10.2166/hydro.2016.212
- Palermo, M., Pagliara, S., Roy, D., 2021. Effect of debris accumulation on scour evolution at bridge pier in bank proximity. Journal of Hydrology and Hydromechanics, 69(1): 108-118. https://doi.org/10.2478/johh-2020-0041
- Parsaie, A., Haghiabi, A.H., Moradinejad, A., 2019. Prediction of Scour Depth below River Pipeline using Support Vector Machine. KSCE J. Civ. Eng., 23(6): 2503-2513. https://doi.org/10.1007/s12205-019-1327-0
- Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A., 2018. CatBoost: unbiased boosting with categorical features. ArXiv. https://doi.org/10.48550/arXiv.1706.09516
- Qaderi, K., Javadi, F., Madadi, M.R., Ahmadi, M.M., 2021. A comparative study of solo and hybrid data driven models for predicting bridge pier scour depth. Mar. Georesour. Geotechnol., 39(5): 589-599. https://doi.org/10.1080/1064119X.2020.1735589
- Sarathi, P., Faruque, M.A.A., Balachandar, R., 2008. Influence of tailwater depth, sediment size and densimetric Froude number on scour by submerged square wall jets. Journal of Hydraulic Research, 46(2): 158-175. https://doi.org/10.1080/00221686.2008.9521853
- Sarkar, A., Dey, S., 2005. Scour downstream of aprons caused by sluices. Proceedings of the Institution of Civil Engineers - Water Management, 158(2): 55-64. https://doi.org/10.1680/wama.2005.158.2.55
- Seyedian, S.M., Kisi, O., 2024. Uncertainty analysis of discharge coefficient predicted for rectangular side weir using machine learning methods. Journal of Hydrology and Hydromechanics, 72(1): 113-130. https://doi.org/10.2478/johh-2023-0043
- Sharafati, A., Haghbin, M., Motta, D., Yaseen, Z.M., 2021. The Application of Soft Computing Models and Empirical Formulations for Hydraulic Structure Scouring Depth Simulation: A Comprehensive Review, Assessment and Possible Future Research Direction. Arch. Comput. Methods Eng., 28(2): 423-447. https://doi.org/10.1007/s11831-019-09382-4
- Verma, D.V.S., Goel, A., 2005. Scour Downstream of a Sluice Gate. ISH J. Hydraul. Eng., 11(3): 57-65. https://doi.org/10.1080/09715010.2005.10514801
- Virtanen, P. et al., 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17(3): 261-272. https://doi.org/10.1038/s41592-019-0686-2
- Watanabe, S., 2023. Tree-Structured Parzen Estimator: Understanding Its Algorithm Components and Their Roles for Better Empirical Performance. ArXiv. https://doi.org/10.48550/arXiv.2304.11127
- Xie, C., Lim, S.-Y., 2015. Effects of Jet Flipping on Local Scour Downstream of a Sluice Gate. J. Hydraul. Eng., 141(4): 04014088. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000983