Have a personal or library account? Click to login
Biochar blended with sheep manure and biogas station residue in different ratios can significantly influence soil properties Cover

Biochar blended with sheep manure and biogas station residue in different ratios can significantly influence soil properties

Open Access
|Mar 2025

References

  1. Ahlawat, V., Dadarwal, R.S., Yadav, P.K., Chaudhary, K., 2023. Effects of long-term nutrient management practices on physicochemical properties of soils: A review. Pharm. Innov. J., 12, 491–496.
  2. Angin, I., Kuru, M., Erinc, F., 2020. The effect of biochar amendment on soil properties and tomato yield. Sustain. Agric. Res., 9, 94–104.
  3. Are, K.S., 2019. Biochar and soils physical health. In: Abrol, V., Sharma, P. (Eds.): An Imperative Amendment for Soil and the Environment. IntechOpen, Rijeka, Croatia, pp. 21–33.
  4. Balashov, E., Buchkina, N., Šimanský, V., Horák, J., 2021. Effects of slow and fast pyrolysis biochar on N2O emissions and water availability of sandy and clayey loam soils with high water-filled pore space. J. Hydrol. Hydromech., 69, 467–474.
  5. Birk, J.J., de Goede, R.G.M., Schouten, J., 2017. Indicators of soil quality: Effects of management practices. Agr. Ecosyst. Environ., 241, 39–48.
  6. Blanco-Canqui, H., 2021. Does biochar application alleviate soil compaction? Review and data synthesis. Geoderma, 404, 115317.
  7. Botková, N., Vitková, J., Šurda, P., Massas, I., Zafeiriou, I., Gaduš, J., Rodrigues, F.C., Borges, P.F.S., 2023. Impact of biochar particle size and feedstock type on hydro-physical properties of sandy soil. J. Hydrol. Hydromech., 71, 345–355.
  8. Cao, X., Ma, L., Harris, W., 2017. The effect of different types of biochar on agricultural productivity. Agron. J., 109, 2922–2932.
  9. Chacón, F.J., Cayuela, M.L., Roig, A., Sánchez-Monedro, M.A., 2017. Understanding, measuring and tuning the electrochemical properties of biochar for environmental applications. Rev. Environ. Sci. Biotechnol., 16, 695–715.
  10. Fecenko, J., Ložek, O., 2000. Nutrition and Fertilization of Field Crops. SAU, Nitra, Slovakia, 442 p. (In Slovak).
  11. Gabhi, R., Basile, L., Kirk, D.W., Giorcelli, M., Tagliaferro, A., Jia, Ch.Q., 2020. Electrical conductivity of wood biochar monoliths and its dependence on pyrolysis temperature. Biochar, 2, 369–378.
  12. García, M., Ocampo, J.A., Patiño, M., 2018. Effects of organic amendments on soil quality and the yield of several crops. Agron. J., 110, 1158–1167.
  13. Githinji, L., Karanja, N., Kinyua, M., 2020. Biochar for improved soil health and crop production: A review. J. Soil Sci. Plant Nut., 20, 1–22.
  14. Graham, P.H., Draeger, K.J., Ferrey, M.L., Conroy, M.J., Hammer, B.E., Martinez, E., Aarons, S.R., Quinto, C., 1994. Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can. J. Microbiol., 40, 198–207.
  15. Gupta, V.V., Germida, J.J., 2015. Soil aggregation: influence on microbial biomass and implications for biological processes. Soil Biol. Biochem., 80, A3–A9.
  16. Hanes, J., 1999. Analyzes of Sorptive Characteristics, SSCRI, Bratislava, Slovakia, 138 p. (In Slovak).
  17. Havlin, J.L., Beaton, J.D., Tisdale, S.L., Nelson, W.L., 2017. Soil Fertility and Fertilizers: An Introduction to Nutrient Management. Pearson, 520 p.
  18. Horák, J., 2015. Testing biochar as a possible way to ameliorate slightly acidic soil at the research field located in the Danubian Lowland. Acta Hort. Regiotec., 18, 20–24.
  19. Horák, J., Šimanský, V., 2017. Effect of biochar on soil CO2 production. Acta Fytotech. Zootech., 20, 72–77.
  20. Horák, J., Šimanský, V., Aydin, E., Igaz, D., Buchkina, N., Balashov, E., 2020. Effects of biochar combined with N-fertilization on soil CO2 emisssion, crop yields and relationships with soil properties. Pol. J. Environ. Stud., 29, 5, 3597–3609.
  21. Hrivňáková, K., Makovníková, J., Barančíková, G., Bezák, P., Bezáková, Z., Dodok, R., Grečo, V., Chlpík, J., Kobza, J., Lištjak, M., Mališ, J., Píš, V., Schlosserová, J., Slávik, O., Styk, J., Širáň, M., 2011. Uniform Methods of Soil Analyses, VÚPOP, Bratislava, Slovakia, 112 p. (In Slovak).
  22. Igaz, D., Šimanský, V., Horák, J., Kondrlová, E., Domanová, J., Rodný, M., Buchkina, N.P., 2018. Can a single dose of biochar affect selected soil physical and chemical characteristics? J. Hydrol. Hydromech., 66, 421–428.
  23. Jeffery, S., Verheijen, F.G.A., van der Velde, M., Bastos, A.C., 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agr. Ecosyst. Environ., 144, 175–187.
  24. Jia, X., Yuan, W., Ju, X., 2015. Short report: effects of biochar addition on manure composting and associated N2O emissions. J. Sustain. Bioenergy Syst., 5, 56–61.
  25. IBI, 2015. State of the biochar industry 2015, A snapshot of commercial activity in the biochar sector. In: IBI-STD-0.1-1, International Biochar Initiative, accessed at. IBI-State-of-the-Industry-2015-final.pdf, Accessed date: 30 November 2024. Jolliffe, I.T., Cadima, J., 2016. Principal component analysis: A review and recent developments. Philos. T. R. Soc. A: Math. Phys. Eng. Sci., 374, 20150202.
  26. Jones, A., Brown, C., 2020. Soil salinity management: Implications for crop production. Agric. Sci., 11, 314–324.
  27. Juriga, M., Aydin, E., Horák, J., Chlpík, J., Rizhiya, E.Y., Buchkina, N.P., Balashov, E.V., Šimanský, V., 2021. The Importance of initial application and reapplication of biochar in the context of soil structure improvement. J. Hydrol. Hydromech., 69, 87–97.
  28. Juriga, M., Šimanský, V., 2018. Effect of biochar on soil structure – review. Acta Fytotech. Zootech., 21, 11–19.
  29. Kováčik, P., Ryant, P., 2024. Agrochemistry, Principles and Practice. SPU, Nitra, Slovakia, 385 p. (In Slovak).
  30. Kumar, A., Mani, M., Tripathi, V., 2019. Effect of soil amendment with organic matter on the physical and chemical properties of soil. J. Soil Sci. Plant Nut., 19, 557–580.
  31. Lehmann, J., Joseph, S., 2015. Biochar for Environmental Management. Routledge, Taylor & Francis Group, London, New York, 928 p.
  32. Lehmann, J., Rillig, M.C., Thies, J., Masiell, C.A., Hockaday, W.C., Crowley D., 2011. Biochar effects on soil biota, A review. Soil Biol. Biochem., 43, 1812–1836.
  33. Major, J., 2013. Practical aspects of biochar application to tree crops. In: IBI Technical Bulletin. International Biochar Initiative, pp. 102.
  34. Mao, J., Liu, M., Xu, J., Wang, W., Chen, H., 2019. Effects of long-term application of manure and digestate on soil microbial communities. Sci. Total Environ., 654, 832–841.
  35. Matsumoto, T., 2021. Biochar in sustainable agriculture: Assessment of types and applications. Agric. Sci. Rev., 13, 45–58.
  36. Meng, L., Li, W., Zhang, S., Zhang, X., Zhao, Y., Chen, L., 2021. Improving sewage sludge compost process and quality by carbon sources addition. Sci. Rep., 11, 1319.
  37. Ng, C.W.W., Touyon, L., Bordoloi, S., 2023. Influence of biochar on improving hydrological and nutrient status of two decomposed soils for yield of medicinal plant – Pinellia ternata. J. Hydrol. Hydromech., 71, 156–168.
  38. Ratzke, C., Gore, J., 2019. Modifying and reacting to the environmental pH can drive bacterial interactions. PLoS Biol., 16, e2004248.
  39. Ritchie, G.S.P., Dolling, P.J., 1985.The role of organic matter in soil acidification. Aust. J. Soil Res., 23, 569–576.
  40. Rončák, P., Németová, Z., Vitková, J., Danáčová, M., Toková, L., Aydin, E., Valent, P., Honek, D., Igaz, D., 2023. Effects of the application of biochar on the soil erosion of plots of sloping agricultural and with silt loam soil. J. Hydrol. Hydromech., 71, 356–368.
  41. Schmidt, H.P., Wilk, N., 2019. Effects of biochar on soil properties and plant growth: A review. Plant Soil, 442, 297–311.
  42. Shackley, S., Ruysschaert, G., Zwart, K., Glaser, B., 2016. Biochar in European Soils and Agriculture, Science and Practice. Routledge, London, New York, 301 p.
  43. Shah, S.A., Shukla, M.K., 2020. Exploring soil salinity: Implications for plant growth and ecosystem health. Soil Sci. Soc. Am. J., 84, 1122–1140.
  44. Sharma, A., Soni, R., Soni, S.K., 2024. From waste to wealth: exploring modern composting innovations and compost valorization. J. Mater. Cycles Waste Manag., 26, 20–48.
  45. Shen, Z., 2024. Biochar Application in Soil to Immobilize Heavy Metals, Fundamentals and Case Studies. Elsevier, Amsterdam, Netherlands, 252 p.
  46. Šimanský, V., 2016. Effects of biochar and biochar with nitrogen on soil organic matter and soil structure in Haplic Luvisol. Acta Fytotech. Zootech., 19, 129–138.
  47. Šimanský, V., Aydin, E., Igaz, D., Horák, J., 2020. Potential application of biochar depends mainly on its profits for farmers: case study in Slovakia. Agriculture, 66, 171–176.
  48. Šimanský, V., Horák, J., Bordoloi, S., 2022. Improving the soil physical properties and relationships between soil properties in arable soils of contrasting texture enhancement using biochar substrates. Geoderma Reg., 28, e443.
  49. Šimanský, V., Igaz, D., Horák, J., Šurda, P., Kolenčík, M., Buchkina, N.P., Uzarowicz, L., Juriga, M., Šrank, D., Pauková, Ž., 2018. Response of soil organic matter and water-stable aggregates to different biochar treatments including nitrogen fertilization. J. Hydrol. Hydromech., 66, 429–436.
  50. Šimanský, V., Juriga, M., Golian, M., Šlosár, M., Provazník, M., 2021. Soil structure as a significant indirect factor affecting crop yields. Acta Fytotech. Zootech., 24, 129–136.
  51. Šimanský, V., Polláková, N., Chlpík, J., Kolenčík, M., 2023. Soil Science. SPU, Nitra, Slovakia, 398 p. (In Slovak).
  52. Šimanský, V., Šrank, D., Juriga, M., 2019. Differences in soil properties and crop yields after application of biochar blended with farmyard manure in sandy and loamy soils. Acta Fytotech. Zootech., 22, 21–25.
  53. Simeonov, L.S., Konstantinov, A.A., Petkov, P., 2010. The Role of organic matter in the movement of nutrients in soil. Geoderma, 154, 295–305.
  54. Smith, P., House, J.I., Bustamante, M., Sobocká, J., Harper, R., Pan, G., West, P.C., Clark, J.M., Adhya, T., Rumpel, C., Paustian, K., Kuikman, P., Cotrufo, M.F., Elliott, J.A., McDowell, R., Griffiths, R.I., Asakawa, S., Bondeau, A., Jain, A.K., Meersmans, J., Pugh, T.A.M., 2016. Global change pressures on soils from land use and management. Glob. Chang. Biol., 22, 1008–1028.
  55. Šrank, D., Šimanský, V., 2020. Differences in soil organic matter and humus of sandy soil after application of biochar substrates and combination of biochar substrates with mineral fertilizers. Acta Fytotech. Zootech., 23, 117–124.
  56. Usman, A.R., Ahmad, M., El-Mahrouky, M., Al-Omran, A., Ok, Y.S., Sallam, A.S., El-Naggar, A.H., Al-Wabel, M.I., 2015. Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions. Environ. Geochem. Health, 38, 511–521.
  57. Wang, Y., Wang, J., Wang, J., Jiang, L., Liu, H., 2018. Effects of organic amendments on soil microbial activity and community structure. Environ. Sci. Pollut. Res., 25, 10667–10678.
  58. Weber, J., 2020. Humic substances and their role in the environment. EC Agric., 1, 3–8.
  59. Yan, F., Schubert, S., Mengel, K., 1996. Soil pH increase due to biological decarboxylation of organic anions. Soil Biol. Biochem., 28, 617–624.
  60. Yuan, J., Xu, R., Qian, W., Wang, R., 2011. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. J. Soil Sediment., 11, 741–750.
  61. Zifcakova, L., 2020. Factors affecting soil microbial processes. In: Datta, R., Meena, R.S., Pathan, S.I., Ceccherini, M.T. (Eds.): Carbon and Nitrogen Cycling in Soil. Springer, Berlin, pp. 439–461.
DOI: https://doi.org/10.2478/johh-2025-0003 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 65 - 72
Submitted on: Oct 7, 2024
Accepted on: Dec 4, 2024
Published on: Mar 5, 2025
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Vladimír Šimanský, Elżbieta Wójcik-Gront, Ján Horák, Žaneta Pauková, Natalya Buchkina, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.