Have a personal or library account? Click to login
A simplified approach for simulating pollutant transport in small rivers with dead zones using convolution Cover

A simplified approach for simulating pollutant transport in small rivers with dead zones using convolution

Open Access
|Nov 2024

References

  1. Chabokpour, J., 2020. Study of pollution transport through the rivers using aggregated dead zone and hybrid cells in series models. Int. J. Environ. Sci. Technol., 17, 4313–4330.
  2. Cunge, J., Holly Jr., F.M., Verwey, A., 1980. Practical Aspects of Computational River Hydraulics. Pitman, London, 420 p.
  3. Czernuszenko, W., Rowiński, P.M., 1997. Properties of the dead-zone model of longitudinal dispersion in rivers. J. Hydraul. Res., 35, 4, 491–504.
  4. Czernuszenko, W., Rowiński, P.M., Sukhodolov, A.N., 1998. Experimental and numerical validation of the dead-zone model. J. Hydraul. Res., 36, 2, 269–280.
  5. Deltares, 2011. Delft3D-FLOW - Simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments. User Manual. Hydro-Morphodynamics. Version 3.15.
  6. De Smedt, F., Brevis, W., Debels, P., 2005. Analytical solution for solute transport resulting from instantaneous injection in streams with transient storage. J. Hydrol., 315, 25–39.
  7. Eagleson, P.S., 1970. Dynamic Hydrology. McGraw Hill, INC, New York, 462 p.
  8. Fischer, H.B., List, E.J., Koh, R.C.Y., Imberger, J., Brooks, N.H., 1979. Mixing in Inland and Coastal Waters. Academic Press, New York, 483 p.
  9. Fletcher, C.A., 1991. Computational Techniques for Fluid Dynamics. Vol. I. Springer Verlag, Berlin, Germany, 401 p.
  10. French, R.H., 1985. Open Channel Hydraulics. Mc Graw Hill INC, New York, 705 p.
  11. Gualtieri, C., 2010. RANS-based simulation of transverse turbulent mixing in a 2D-geometry. Environ. Fluid Mech., 10, 137–156. http://doi.org/10.1007/s10652-009-9119-6
  12. HEC-RAS, 2016. River Analysis System, User’s Manual, Version 5.0, US Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.
  13. Hervouet, J.M., 2007. Hydrodynamics of Free Surface Flows. Wiley, Chichester, 341 p.
  14. Jaiswal, D.K., Kumar, A., Yadav, R.R., 2011. Analytical solution to the one-dimensional advection-diffusion equation with temporally dependent coefficients. J. Water Resource Prot., 3, 76–84. http://doi.org/10.4236/jwarp.2011.31009.
  15. Mc Quarrie, D.A., 2003. Mathematical Methods for Scientists and Engineers. Univ. Science Books, 1161 p.
  16. Krukowski, M., Kurzawski, G., 2001. Spread of the passive pollutants in lowland river. Scientific Review–Engineering and Environmental Sciences, 23, 23–36. (In Polish.)
  17. Lees, M.J., Camacho, L.A., Chapra, S., 2000. On the relationship of transient storage and aggregated dead zone models of longitudinal solute transport in streams. Water Resour. Res., 36, 1, 213-224.
  18. LeVeque, R.J., 2002. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, 558 p.
  19. Mazaheri, M., Samani, J.M.V., Samani, H.M.V., 2013. Analytical solution to one-dimensional advection-diffusion equation with several point sources through arbitrary time-dependent emission rate patterns. J. Agr. Sci. Technol., 15, 1231–1245.
  20. MIKE 11, 2021. A modelling system for Rivers and Channels. User Guide. DHI A/S
  21. Ouro, P., Fraga, B., Viti, N., Angeloudis, A., Stoesser, T., Gualtieri, C., 2018. Instantaneous transport of a passive scalar in a turbulent separated flow. Environ. Fluid Mech., 18, 487–513. https://doi.org/10.1007/s10652-017-9567-3
  22. Press, W.H., Teukolsky, S.A., Veterling, W.T., Flannery, B.P., 1992. Numerical Recipes in C. Cambridge University Press.
  23. Rowiński, P., Dysarz, T., Napiórkowski, J.J., 2004. Estimation of longitudinal dispersion and storage zone parameters. In: Greco, M., Carravetta, A., Della Morte, R. (Eds): Proc. 2nd Int. Conf. on Fluvial Hydraulics – River Flow 2004. Taylor & Francis Group, London, pp. 1201–1210.
  24. Runkel, R.L., 1998. One dimensional transport with inflow and storage (OTIS): a solute trans- transport model for streams and rivers. Water Resources Investigation Report 98-4018. U.S. Geological Survey. https://doi.org/10.3133/wri984018
  25. Runkel, R.L., Chapra, S.C., 1993. An efficient numerical solution of the transient storage equations for solute transport in small streams. Water Resources Research, 29, 1, 211–215.
  26. Rutherford, J.C., 1994. River Mixing. Wiley, Chichester, UK, 348 p.
  27. Říha, J., Julínek, T., Kotaška, S., 2023. Simplified dispersion analysis based on dye tests at a small stream. J. Hydrol. Hydromech., 71, 3, 316–330.
  28. Sokáč, M., Velisková, Y., Gualtieri, C., 2018. An approximated method for 1-D simulation of pollution transport in stream with dead zones. J. Hydrol. Hydromech., 4, 437–447.
  29. Sokáč, M., Velísková, Y., Gualtieri, C., 2019. Application of asymmetrical statistical distributions for 1D simulation of solute transport in streams. Water, 11, 2145. https://doi.org/10.3390/w11102145
  30. Szymkiewicz, R., 2010. Numerical Modeling in Open Channel Hydraulics. Springer, Dordrecht, 419 p.
  31. Szymkiewicz, R., Weinerowska, K., 2005. Analytical-numerical approach to solve the transport equation for steady gradually varied flow in open channel. Far East J. Appl. Math., 19, 2, 213–228.
  32. Szymkiewicz, R., Gąsiorowski, D., 2021. Adaptive method for solution of 1D and 2D advection-diffusion equations used in environmental engineering. Journal of Hydroinformatics, 23, 6, 1290–1311. http://doi.org/10.2166/hydro.2021.062
  33. Thackston, E.L., Schnelle, K.B.J., 1970. Predicting effects of dead zones on stream mixing. J. Sanit. Eng. Div., 96, 319–331.
  34. Valentine, E.M., Wood, I.R., 1977. Longitudinal dispersion with dead zones. J. Hydraul. Div. ASCE, 103, 975–990.
  35. Valentine, E., Wood, I., 1979. Experiments in longitudinal dispersion with dead zones. J. Hydraul. Div. ASCE, 105, 999–1016.
  36. van Genuchten, M.Th., Leij, F.J., Skaggs, T.H., Toride, N., Bradford, S.A., Pontedeiro, E.M., 2013a. Exact analytical solutions for contaminant transport in rivers. 1. The equilibrium advection-dispersion equation. J. Hydrol. Hydromech., 61, 2, 146–160.
  37. van Genuchten, M.Th., Leij, F.J., Skaggs, T.H., Toride, N., Bradford, S.A., Pontedeiro, E.M., 2013b. Exact analytical solutions for contaminant transport in rivers. 2. Transient storage and decay chain solutions. J. Hydrol. Hydromech., 61, 3, 250–259.
  38. Velísková, Y., Sokáč, M., Moghaddam, M.B., 2023. Inverse task of pollution spreading – Localization of source in extensive open channel network structure. J. Hydrol. Hydromech., 71, 4, 475–485.
  39. Weinbrecht, V., 2004. Influence of dead-water zones on the dispersive mass transport in rivers. PhD Thesis. Institute of Hydromechanics, University of Karlsruhe, Germany, 129 p.
  40. Young, P.C., Lees, M.J., 1993. The active mixing volume: a new concept in modelling environmental systems. In: Barnett, V., Turkman, K. (Eds): Statistics for the Environment. Wiley, Chichester, pp. 3–43.
DOI: https://doi.org/10.2478/johh-2024-0022 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 538 - 546
Submitted on: Feb 2, 2024
Accepted on: Sep 8, 2024
Published on: Nov 21, 2024
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Romuald Szymkiewicz, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.