Have a personal or library account? Click to login
Optimal spur dike orientation for scour mitigation under downward seepage conditions Cover

Optimal spur dike orientation for scour mitigation under downward seepage conditions

Open Access
|Aug 2024

References

  1. Akbari, M., Vaghefi, M., Chiew, Y.M., 2021. Effect of T-shaped spur dike length on mean flow characteristics along a 180-degree sharp bend. Journal of Hydrology and Hydromechanics, 69, 1, 98–107.
  2. Alvarez, J.A.M., 1989. Design of groins and spur dikes. In: Proc. 1989 National Conf. on Hydraulic Engineering, ASCE, New York, pp. 296–301.
  3. Attia, K., El Saied, G., 2006. The hydraulic performance of oriented spur dike implementation in open channel. Journal of International Water Technology Conference (IWTC, Alexandria, Egypt), 10, 281–298.
  4. Berenbrock, C., 1999. Streamflow gains and losses in the lower boise river basin, Idaho. US Geological Survey Water-Resources Investigations Report 1996-97, 99–4105.
  5. Brown, S.A., 1985. Design of spur-type streambank stabilisation structures. Turner-Fairbank Highway Research Center. FHWA/RD-84/101;SCR-371-83-039. https://rosap.ntl.bts.gov/view/dot/25321/dot_25321_DS1.pdf
  6. Cao, D., Chiew, Y.M., 2014. Suction effects on sediment transport in closed-conduit flows. J. Hydraul. Eng., 140, 5, 04014008. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000833
  7. Carlson, R.A., Petrich, C.R., 1999. New York canal geologic cross section, seepage gain/loss data, and ground water hydrographs: Compilation and interim findings. Treasure Valley Hydrologic Project Open File Report, 6 p. https://idwr.idaho.gov/wp-content/uploads/sites/2/projects/treasure-valley/TVHP-Exec-Summary.pdf
  8. Devi, T.B., Kumar, B., 2016. Channel hydrodynamics of submerged, flexible vegetation with seepage. J. Hydraul. Eng., 142, 11, 04016053. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001180
  9. Dey, S., Sarkar, S., Ballio, F., 2011. Double-averaging turbulence characteristics in seeping rough-bed streams. J. Geophys. Res.
  10. Dey, S., Sarkar, S., Ballio, F., 2011. Double-averaging turbulence characteristics in seeping rough-bed streams. J. Geophys. Res. Atmos., 116 (F3). https://doi.org/10.1029/2010JF001832
  11. Elsaiad A.A., Elnikhely, E.A., 2016. Exploration of scour characteristics around spur dike in a straight wide channel. International Water Technology Journal, 6, 2, 2016.
  12. Ezzeldin, M.M., Saafan, T.A., Rageh, O.S., Nejm, L.M., Assistant, T., 2007. Local scour around spur dikes. In: Eleventh International Water Technology Conference, IWTC11. Sharm El-Sheikh, pp. 779–795.
  13. Ezzeldin, R.M., 2019. Numerical and experimental investigation for the effect of permeability of spur dikes on local scour. J. Hydroinformatics., 21, 2, 335e342.
  14. Garde, R.J., Subramanya, K., Nambudripad, K.D., 1961. Study of scour around spur-dikes. Journal of the Hydraulics Division, 87, 6, 23–37.
  15. Indulekha, K.P., Jayasree, P.K., Sachin, S., 2021. Simulation of flow pattern around series of groynes with different orientations in meandering channels. IOP Conference Series: Materials Science and Engineering, 1114, 1, 012024. https://doi.org/10.1088/1757-899x/1114/1/012024
  16. Jafari, R., Sui, J., 2021. Velocity field and turbulence structure around spur dikes with different angles of orientation under ice covered flow conditions. Water, 13, 13, 1844.
  17. Kanungo, K., 1956. Central board of irrigation and power symposium on determination of costs and benefits of river valley projects, 1953 (Book Review). Indian Journal of Agricultural Economics, 11, 1, 101.
  18. Kinzli, K.D., Martinez, M., Oad, R., Prior, A., Gensler, D., 2010. Using an ADCP to determine canal seepage loss in an irrigation district. Agric. Water Manage., 97, 6, 801–810. https://doi.org/10.1016/j.agwat.2009.12.014
  19. Koken, M., 2011. Coherent structures around isolated spur dikes at various approach flow angles. Journal of Hydraulic Research, 49, 6, 736–743.
  20. Krishna Prasad, S., Indulekha, K.P., Balan, K., 2016. Analysis of groyne placement on minimising river bank erosion. Procedia Technology, 24, 47–53. https://doi.org/10.1016/j.protcy.2016.05.008
  21. Kuhnle, R.A., Alonso, C.V., Shields Jr, F.D., 2002. Local scour associated with angled spur dikes. Journal of Hydraulic Engineering, 128, 12, 1087–1093.
  22. Kumar, V., Raju, K. G.R., Vittal, N., 1999. Reduction of local scour around bridge piers using slots and collars. J. Hydraul. Eng., 125, 12, 1302–1305. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:12(1302)
  23. Langhoff, J.H., Rasmussen, K.R., Christensen, S., 2006. Quantification and regionalisation of groundwater–surface water interaction along an alluvial stream. J. Hydrol., 320, 3–4, 342–358. https://doi.org/10.1016/j.jhydrol.2005.07.040
  24. Li, G., Sui, J., Sediqi, S., Dziedzic, M., 2023. Local scour around submerged angled spur dikes under ice cover. International Journal of Sediment Research, 38, 6, 781–793. https://doi.org/10.1016/j.ijsrc.2023.08.003
  25. Liu, X.X., Chiew, Y.-M., 2012. Effect of seepage on initiation of cohesionless sediment transport. Acta Geophys., 60, 6, 1778–1796. https://doi.org/10.2478/s11600-012-0043-7
  26. Lu, Y., Chiew, Y.M., Cheng, N.S., 2008. Review of seepage effects on turbulent open-channel flow and sediment entrainment. J. Hydraul. Res., 46, 4, 476–488. https://doi.org/10.3826/jhr.2008.2942
  27. Mamak, W., 1964. River Regulation. Arkady, Poland, 415 p.
  28. Martin, C.A., Gates, T.K., 2014. Uncertainty of canal seepage losses estimated using flowing water balance with acoustic Doppler devices. J. Hydrol., 517, 746–761. https://doi.org/10.1016/j.jhydrol.2014.05.074
  29. Mia, M.F., Nago, H., 2003. Design method of time-dependent local scour at circular bridge pier. J. Hydraul. Eng., 129, 6, 420–427. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:6(420)
  30. Mohammadpour, R., Ghani, A.A., Vakili, M., Sabzevari, T., 2016. Prediction of temporal scour hazard at bridge abutment. Natural Hazards, 80, 3, 1891–1911. https://doi.org/10.1007/s11069-015-2044-8
  31. Naranjo, R., Smith, D., Lindenbach, E., 2023. Incorporating temperature into seepage loss estimates for a large unlined irrigation canal. J. Hydrol., 617, Part C, 129117. https://doi.org/10.1016/j.jhydrol.2023.129117
  32. Nath, D., Misra, U.K., 2017. Experimental study of local scour around single spur dike in an open channel. International Research Journal of Engineering and Technology, 4, 6, 2728–2734.
  33. Norouzi, R., Ebadzadeh, P., Sume, V., Daneshfaraz, R., 2023. Upstream vortices of a sluice gate: An experimental and numerical study. Aqua Water Infrastruct. Ecosyst. Soc., 72, 10, 1906–1919.
  34. Pandey, M., Ahmad, Z., Sharma, P.K., 2016. Estimation of maximum scour depth near a spur dike. Canadian Journal of Civil Engineering, 43, 3, 270–278. https://doi.org/10.1139/cjce-2015-0280
  35. Patel, H.K., Arora, S., Lade, A.D., Kumar, B., Azamathulla, H.M., 2023a. Flow behaviour concerning bank stability in the presence of spur dike – A review. Water Supply, 23, 1, 237–258. https://doi.org/10.2166/ws.2022.418
  36. Patel, H.K., Kumar, B., 2023. Hydro-morphological behavior around T-shaped spur dikes with downward seepage. Scientific Reports, 13, 1, 1–14. https://doi.org/10.1038/s41598-023-37694-w
  37. Patel, H.K., Arora, S., Chavan, R., Kumar, B., 2023b. Migrating scour depth around a spur dike with downward seepage using multiscale characterizations. Experimental Thermal and Fluid Science, 151, 111071. https://doi.org/10.1016/j.expthermflusci.2023.111071
  38. Patel, H.K., Qi, M., Kumar, B., 2023c. Downward seepage effects on flow near a L-shape spur dike and bed morphology. International Journal of Sediment Research, 39, 2, 194–208. https://doi.org/10.1016/j.ijsrc.2023.11.005
  39. Rao, A.R., Sreenivasulu, G., Kumar, B., 2011. Geometry of sand-bed channels with seepage. Geomorphology, 128, 3–4, 171–177. https://doi.org/10.1016/j.geomorph.2011.01.003
  40. Richardson, E.V., Simons, D.B., 1973. Spurs and Guide Banks. Colorado State University, Fort Collins, Colo.
  41. Richardson, E.V., Simons, D.B., 1984. Use of spurs and guide banks for highway crossing. In: Proc. Transportation Research Record, 2nd Bridge Engrg. Conf. v2, pp. 184–193.
  42. Roushangar, K., Goodarzi, S., Abbaszadeh, H., 2024. Numerical investigation of the performance of blade groynes on scouring and its effect on hydraulic parameters of sediment and flow. Environ. Water Eng., 10, 1, 121–136.
  43. Sharma, A., Kumar, B., 2018. High-order velocity moments of turbulent boundary layers in seepage affected alluvial channel. J. Fluids Eng., 140, 8. https://doi.org/10.1115/1.4039253
  44. Sharma, A., Kumar, B., Balachandar, R., 2020. Comparison of flow and morphological characteristics in uniform and nonuniform sand bed channel. Can. J. Civ. Eng., 47, 6, 678–690. https://doi.org/10.1139/cjce-2017-0627
  45. Sharma, A., Kumar, B., Oliveto, G., 2021. Experimental study on the near-bed flow characteristics of alluvial channel with seepage. Appl. Sci., 11, 20, 9619. https://doi.org/10.3390/app11209619
  46. Sreenivasulu, G., Kumar, B., Rao, A.R., 2011. Variation of stream power with seepage in sand-bed channels. Water SA, 37, 1, 115–119. https://doi.org/10.4314/wsa.v37i1.64115
  47. Tanji, K.K., Kielen, N.C., 2002. Agricultural drainage water management in arid and semi-arid areas. Irrig. Drain. Paper, 61. FAO, Rome. https://cir.nii.ac.jp/crid/1130000797054718464
  48. Taye, J., Kumar, B., 2021. Experimental study on near-bed flow turbulence of sinuous channel with downward seepage. Water Manag., 174, 4, 173–186. https://doi.org/10.1680/jwama.19.00094
  49. Taye, J., Sharma, A., Kumar, B., 2023. Effect of downward seepage on turbulence and morphology in mobile boundary sinuous channel. Phys. Fluids, 35, 1. https://doi.org/10.1063/5.0133201
  50. Tison Jr, G., 1962. Discussion of “Study of Scour Around Spur-Dikes”. Journal of the Hydraulics Division, 88, 4, 301–306.
  51. Tripathi, R.P., Pandey, K.K., 2022. Scour around spur dike in curved channel: a review. Acta Geophysica, 70, 5, 2469–2485. https://doi.org/10.1007/s11600-022-00795-7
  52. Van der Lely, A., 1994. Coleambally draft land and water management plan. RW 3127-s3-062. July 1994.
  53. Wang, C., Yu, X., Liang, F., 2017. A review of bridge scour: mechanism, estimation, monitoring and countermeasures. Natural Hazards, 87, 3, 1881–1906. https://doi.org/10.1007/s11069-017-2842-2
  54. Yalin, M.S., 1976. Mechanics of Sediment Transport. Pergamon, Oxford, U. K. https://cir.nii.ac.jp/crid/1130000797829041920
  55. Yossef, M., 2002. The Effect of Groynes on Rivers: Literature Review. Cluster Publicatie nummer 03.03.04; Delft University of Technology, Delft, The Netherlands. http://resolver.tudelft.nl/uuid:b9545ba7-2423-4c20-ace2-0e1cd799d18a
  56. Yussuff, S.M.H., Chauhan, H.S., Kumar, M., Srivastava, V.K., 1994. Transient canal seepage to sloping aquifer. J. Irrig. Drain. Eng., 120, 1, 97–109. https://doi.org/10.1061/(ASCE)0733-9437(1994)120:1(97)
  57. Zhang, H., Nakagawa, H., 2008. Scour around spur dyke: Recent advances and future researches. Annuals of Disaster Prevention Research Institute, 51 B, 633–652.
DOI: https://doi.org/10.2478/johh-2024-0019 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 386 - 397
Submitted on: Mar 18, 2024
Accepted on: Aug 1, 2024
Published on: Aug 15, 2024
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Harish K. Patel, Bimlesh Kumar, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.