References
- Beneš, M., 2007. Computational studies of anisotropic diffuse interface model of microstructure formation in solidification. Acta Mathematica Universitatis Comenianae, 76, 1, 39–50.
- Chung, J., Hulbert, G.M., 1993. A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized method. Journal of Applied Mechanics, 60, 2, 371–375. https://doi.org/10.1115/1.2900803
- Comsol Multiphysics 3.4. https://www.comsol.com
- Coussy, O., 2005. Poromechanics of freezing materials. Journal of the Mechanics and Physics of Solids, 53, 1689–1718. https://doi.org/10.1016/j.jmps.2005.04.001
- Ding, B., Rezanezhad, F., Gharedaghloo, B., Van Cappellen, P., Passeport, E., 2019. Bioretention cells under cold climate conditions: Effects of freezing and thawing on water infiltration, soil structure, and nutrient removal. Science of the Total Environment, 649, 749–759. https://doi.org/10.1016/j.scitotenv.2018.08.366
- Frémond, M., Nicolas, P., 1990. Macroscopic thermodynamics of porous media. Continuum Mech. Thermodyn., 2, 119–139.
- Hartikainen, J., Mikkola, M., 1997. Thermomechanical model of freezing soil by use of the theory of mixtures. In: Proc. 6th Finnish Mechanics Days, pp. 1–23, Oulu.
- Huang, L., Sheng, Y., Wu, J., He, B., Huang, X., Zhang, X., 2020. Experimental study on frost heaving behavior of soil under different loading paths. Cold Regions Science and Technology, 169, 102908. https://doi.org/10.1016/j.coldregions.2019.102905
- Hunt, K., 2022. Belching lakes, mystery craters, ‘zombie fires’: How the climate crisis is transforming the Arctic permafrost, CNN World, November 12, 2022.
- Kindy, D., 2021. Permafrost thaw in Siberia creates a ticking ‘methane bomb’ of greenhouse gases, scientists warn. Smithsonian Magazine, August 5, 2021.
- Kiyohashi, H., Sasaki, S., Masuda, H., 2003. Effective thermal conductivity of silica sand as a filling material for crevices around radioactive-waste canisters, High Temp. High Pressures, 35/36, 179–192. https://doi.org/10.1068/htjr089
- Kojima, Y., Heitman, J.L., Noborio, K., Ren, T.S., Horton, R., 2018. Sensitivity analysis of temperature changes for determining thermal properties of partially frozen soil with a dual probe heat pulse sensor. Cold Regions Science and Technology, 151, 188–195. https://doi.org/10.1016/j.coldregions.2018.03.022
- Konovalov, A.A., 2015. Relation between the supercooling and crystallization temperatures of moist soil and its strength in the frozen state. Journal of Engineering Physics and Thermo-physics, 88, 5, 1074–1081. https://doi.org/10.1007/s10891-015-1286-3
- Kumara, J.J., Kikuchi, Y., Kurashina, T., 2015. Effective length of the soil plug of inner-sleeved open-ended piles in sand, J. GeoEng., 10, 3, 75–82.
- Landers, K., Streletskiy, D., 2023. (Un) frozen foundations: A study of permafrost construction practices in Russia, Alaska, and Canada. Ambio, 52, 1170–1183. https://doi.org/10.1007/s13280-023-01866-9
- Lara, R.P., Berg, A.A., Warland, J., Tetlock, E., 2020. In situ estimates of freezing/melting point depression in agricultural soils using permittivity and temperature measurements. Water Resources Research, 56. https://doi.org/10.1029/2019WR026020
- Miller, R.D., 1978. Frost heaving in non-colloidal soils. In: Proc. 3rd Int. Conference on Permafrost, Edmonton.
- Nicolsky, D.J., Romanovsky, V.E., Panteleev, G.G., 2009. Estimation of soil thermal properties using in-situ temperature measurements in the active layer and permafrost. Cold Regions Science and Technology, 55, 120–129. https://doi.org/10.1016/j.coldregions.2008.03.003
- Nishimura, S., Gens, A., Olivella, S., Jardine, R.J., 2009. THM-coupled finite element analysis of frozen soil: formulation and application. Géotechnique, 59, 3, 159–171. https://doi.org/10.1680/geot.2009.59.3.159
- Nsaif, M.H., Heron, C., Marshall, A.M., 2019. Design of a freeze-thaw system for laboratory soil testing. In: Proceedings of the 4th World Congress on Civil, Structural, and Environmental Engineering, Rome. https://doi.org/10.11159/icgre19.133
- Olid, C., Rodellas, V., Rocher-Ros, G. et al., 2022. Groundwater discharge as a driver of methane emissions from Arctic lakes. Nature Communication, 13, 3667.
- Othman, M.A., Benson, C.H., 1993. Effect of freeze–thaw on the hydraulic conductivity and morphology of compacted clay. Canadian Geotechnical
- Journal, 30, 2. https://doi.org/10.1139/t93-020
- Pauš, P., Beneš, M., 2009. Direct approach to mean-curvature flow with topological changes. Kybernetika, 45, 4, 591–604.
- Rempel, A.W., Wettlaufer, J.S., Worster, M.G., 2004. Premelting dynamics in a continuum model of frost heave. Journal of Fluid Mechanics, 498, 227–244. https://doi.org/10.1017/S0022112003006761
- Rempel, A.W., 2011. Microscopic and environmental controls on the spacing and thickness of segregated ice lenses. Quaternary Research, 75, 2, 316–324. https://doi.org/10.1016/j.yqres.2010.07.005
- Skempton, A.W., 1961. Effective Stress in Soils, Concrete and Rocks. Thomas Telford Publishing, pp. 106–118.
- Smith, M.W., Onysko, D., 1990. Observations and significance of internal pressures in freezing soil. In: Proceedings of the 5th Canadian Permafrost Conference. National Research Council Canada-Centre d'etudes nordiques, Universite Laval, Quebec, Canada. 75–81.
- Suh, H.S., Sun, W.C., 2022. Multi-phase-field microporomechanics model for simulating ice-lens growth in frozen soil. International Journal for Numerical and Analytical Methods in Geomechanics, 46, 12, 2307–2336.
- Sweidan, A.H., Heider, Y., Markert, B., 2020. A unified water/ice kinematics approach for phase-field thermo-hydro-mechanical modeling of frost action in porous media. Comput. Methods Appl. Mech. Eng., 372, 113358. https://doi.org/10.1016/j.cma.2020.113358
- Sweidan, A.H., Niggemann, K., Heider, Y., Ziegler, M., Mark-ert, B., 2022. Experimental study and numerical modeling of the thermo-hydro-mechanical processes in soil freezing with different frost penetration directions. Acta Geotech., 17, 231–255. https://doi.org/10.1007/s11440-021-01191-z
- Taber, S., 1929. Frost heaving. The Journal of Geology, 37, 5, 428–461. https://www.jstor.org/stable/i30056650
- Taber, S., 1930. The mechanics of frost heaving. The Journal of Geology, 38, 4, 303–317. https://doi.org/10.1086/623720
- Vogel, T., Dohnal M., Votubová J., Dušek J., 2019. Soil water freezing model with non-iterative energy balance accounting, Journal of Hydrology, 578, 2, 124071. https://doi.org/10.1016/j.jhydrol.2019.124071
- Wagner, D., Wille, C., Kobabe, S., Pfeiffer, E.M., 2003. Simulation of freezing-thawing cycles in a permafrost microcosm for assessing microbial methane production under extreme conditions, Permafrost and Periglac. Process, 14, 367–374. https://doi.org/10.1002/ppp.468
- Watanabe, K., Kito, T., Wake, T., Sakai, M., 2011. Freezing experiments on unsaturated sand, loam and silt loam. Annals of Glaciology 52, 58, 37–43. https://doi.org/10.3189/172756411797252220
- Welch, C., 2019. Arctic permafrost is thawing fast. That affects us all. National Geographic, September Issue.
- Yen, Y.-C., 1981. Review of thermal properties of snow, ice and sea ice, in: Technical Report CRREL Report 81-10, U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, New Hamphsire, U.S.A.
- Zhang, B., Han, C.J., Yu, X., 2015. A non-destructive method to measure the thermal properties of frozen soils during phase transition. Journal of Rock Mechanics and Geotechnical Engineering, 7, 2, 155–162. https://doi.org/10.1016/j.jrmge.2015.03.005
- Žák, A., Beneš, M., Illangasekare, T.H., 2013. Analysis of model of soil freezing and thawing. IAENG International Journal of Applied Mathematics, 43, 3, 127–134.
- Žák, A., Beneš M., Illangasekare T.H., Trautz A.C., 2018a. Mathematical model of freezing in a porous medium at micro-scale. Commun. Comput. Phys., 24, 2, 557–575. https://doi.org/10.4208/cicp.OA-2017-0082
- Žák, A., Beneš, M., 2018b. Micro-scale model of thermomechanics in solidifying saturated porous media. Acta Phys. Pol. A., 134, 3, 678–682. https://doi.org/10.12693/APhysPolA.134.678
- Žák, A., Beneš, M., Illangasekare, T.H., 2023. Pore-scale model of freezing inception in a porous medium. Comput. Methods Appl. Mech. Engrg., 414, 116166. https://doi.org/10.1016/j.cma.2023.116166