Have a personal or library account? Click to login
Experimental and numerical investigation of water freezing and thawing in fully saturated sand Cover

Experimental and numerical investigation of water freezing and thawing in fully saturated sand

Open Access
|Aug 2024

References

  1. Beneš, M., 2007. Computational studies of anisotropic diffuse interface model of microstructure formation in solidification. Acta Mathematica Universitatis Comenianae, 76, 1, 39–50.
  2. Chung, J., Hulbert, G.M., 1993. A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized method. Journal of Applied Mechanics, 60, 2, 371–375. https://doi.org/10.1115/1.2900803
  3. Comsol Multiphysics 3.4. https://www.comsol.com
  4. Coussy, O., 2005. Poromechanics of freezing materials. Journal of the Mechanics and Physics of Solids, 53, 1689–1718. https://doi.org/10.1016/j.jmps.2005.04.001
  5. Ding, B., Rezanezhad, F., Gharedaghloo, B., Van Cappellen, P., Passeport, E., 2019. Bioretention cells under cold climate conditions: Effects of freezing and thawing on water infiltration, soil structure, and nutrient removal. Science of the Total Environment, 649, 749–759. https://doi.org/10.1016/j.scitotenv.2018.08.366
  6. Frémond, M., Nicolas, P., 1990. Macroscopic thermodynamics of porous media. Continuum Mech. Thermodyn., 2, 119–139.
  7. Hartikainen, J., Mikkola, M., 1997. Thermomechanical model of freezing soil by use of the theory of mixtures. In: Proc. 6th Finnish Mechanics Days, pp. 1–23, Oulu.
  8. Huang, L., Sheng, Y., Wu, J., He, B., Huang, X., Zhang, X., 2020. Experimental study on frost heaving behavior of soil under different loading paths. Cold Regions Science and Technology, 169, 102908. https://doi.org/10.1016/j.coldregions.2019.102905
  9. Hunt, K., 2022. Belching lakes, mystery craters, ‘zombie fires’: How the climate crisis is transforming the Arctic permafrost, CNN World, November 12, 2022.
  10. Kindy, D., 2021. Permafrost thaw in Siberia creates a ticking ‘methane bomb’ of greenhouse gases, scientists warn. Smithsonian Magazine, August 5, 2021.
  11. Kiyohashi, H., Sasaki, S., Masuda, H., 2003. Effective thermal conductivity of silica sand as a filling material for crevices around radioactive-waste canisters, High Temp. High Pressures, 35/36, 179–192. https://doi.org/10.1068/htjr089
  12. Kojima, Y., Heitman, J.L., Noborio, K., Ren, T.S., Horton, R., 2018. Sensitivity analysis of temperature changes for determining thermal properties of partially frozen soil with a dual probe heat pulse sensor. Cold Regions Science and Technology, 151, 188–195. https://doi.org/10.1016/j.coldregions.2018.03.022
  13. Konovalov, A.A., 2015. Relation between the supercooling and crystallization temperatures of moist soil and its strength in the frozen state. Journal of Engineering Physics and Thermo-physics, 88, 5, 1074–1081. https://doi.org/10.1007/s10891-015-1286-3
  14. Kumara, J.J., Kikuchi, Y., Kurashina, T., 2015. Effective length of the soil plug of inner-sleeved open-ended piles in sand, J. GeoEng., 10, 3, 75–82.
  15. Landers, K., Streletskiy, D., 2023. (Un) frozen foundations: A study of permafrost construction practices in Russia, Alaska, and Canada. Ambio, 52, 1170–1183. https://doi.org/10.1007/s13280-023-01866-9
  16. Lara, R.P., Berg, A.A., Warland, J., Tetlock, E., 2020. In situ estimates of freezing/melting point depression in agricultural soils using permittivity and temperature measurements. Water Resources Research, 56. https://doi.org/10.1029/2019WR026020
  17. Miller, R.D., 1978. Frost heaving in non-colloidal soils. In: Proc. 3rd Int. Conference on Permafrost, Edmonton.
  18. Nicolsky, D.J., Romanovsky, V.E., Panteleev, G.G., 2009. Estimation of soil thermal properties using in-situ temperature measurements in the active layer and permafrost. Cold Regions Science and Technology, 55, 120–129. https://doi.org/10.1016/j.coldregions.2008.03.003
  19. Nishimura, S., Gens, A., Olivella, S., Jardine, R.J., 2009. THM-coupled finite element analysis of frozen soil: formulation and application. Géotechnique, 59, 3, 159–171. https://doi.org/10.1680/geot.2009.59.3.159
  20. Nsaif, M.H., Heron, C., Marshall, A.M., 2019. Design of a freeze-thaw system for laboratory soil testing. In: Proceedings of the 4th World Congress on Civil, Structural, and Environmental Engineering, Rome. https://doi.org/10.11159/icgre19.133
  21. Olid, C., Rodellas, V., Rocher-Ros, G. et al., 2022. Groundwater discharge as a driver of methane emissions from Arctic lakes. Nature Communication, 13, 3667.
  22. Othman, M.A., Benson, C.H., 1993. Effect of freeze–thaw on the hydraulic conductivity and morphology of compacted clay. Canadian Geotechnical
  23. Journal, 30, 2. https://doi.org/10.1139/t93-020
  24. Pauš, P., Beneš, M., 2009. Direct approach to mean-curvature flow with topological changes. Kybernetika, 45, 4, 591–604.
  25. Rempel, A.W., Wettlaufer, J.S., Worster, M.G., 2004. Premelting dynamics in a continuum model of frost heave. Journal of Fluid Mechanics, 498, 227–244. https://doi.org/10.1017/S0022112003006761
  26. Rempel, A.W., 2011. Microscopic and environmental controls on the spacing and thickness of segregated ice lenses. Quaternary Research, 75, 2, 316–324. https://doi.org/10.1016/j.yqres.2010.07.005
  27. Skempton, A.W., 1961. Effective Stress in Soils, Concrete and Rocks. Thomas Telford Publishing, pp. 106–118.
  28. Smith, M.W., Onysko, D., 1990. Observations and significance of internal pressures in freezing soil. In: Proceedings of the 5th Canadian Permafrost Conference. National Research Council Canada-Centre d'etudes nordiques, Universite Laval, Quebec, Canada. 75–81.
  29. Suh, H.S., Sun, W.C., 2022. Multi-phase-field microporomechanics model for simulating ice-lens growth in frozen soil. International Journal for Numerical and Analytical Methods in Geomechanics, 46, 12, 2307–2336.
  30. Sweidan, A.H., Heider, Y., Markert, B., 2020. A unified water/ice kinematics approach for phase-field thermo-hydro-mechanical modeling of frost action in porous media. Comput. Methods Appl. Mech. Eng., 372, 113358. https://doi.org/10.1016/j.cma.2020.113358
  31. Sweidan, A.H., Niggemann, K., Heider, Y., Ziegler, M., Mark-ert, B., 2022. Experimental study and numerical modeling of the thermo-hydro-mechanical processes in soil freezing with different frost penetration directions. Acta Geotech., 17, 231–255. https://doi.org/10.1007/s11440-021-01191-z
  32. Taber, S., 1929. Frost heaving. The Journal of Geology, 37, 5, 428–461. https://www.jstor.org/stable/i30056650
  33. Taber, S., 1930. The mechanics of frost heaving. The Journal of Geology, 38, 4, 303–317. https://doi.org/10.1086/623720
  34. Vogel, T., Dohnal M., Votubová J., Dušek J., 2019. Soil water freezing model with non-iterative energy balance accounting, Journal of Hydrology, 578, 2, 124071. https://doi.org/10.1016/j.jhydrol.2019.124071
  35. Wagner, D., Wille, C., Kobabe, S., Pfeiffer, E.M., 2003. Simulation of freezing-thawing cycles in a permafrost microcosm for assessing microbial methane production under extreme conditions, Permafrost and Periglac. Process, 14, 367–374. https://doi.org/10.1002/ppp.468
  36. Watanabe, K., Kito, T., Wake, T., Sakai, M., 2011. Freezing experiments on unsaturated sand, loam and silt loam. Annals of Glaciology 52, 58, 37–43. https://doi.org/10.3189/172756411797252220
  37. Welch, C., 2019. Arctic permafrost is thawing fast. That affects us all. National Geographic, September Issue.
  38. Yen, Y.-C., 1981. Review of thermal properties of snow, ice and sea ice, in: Technical Report CRREL Report 81-10, U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, New Hamphsire, U.S.A.
  39. Zhang, B., Han, C.J., Yu, X., 2015. A non-destructive method to measure the thermal properties of frozen soils during phase transition. Journal of Rock Mechanics and Geotechnical Engineering, 7, 2, 155–162. https://doi.org/10.1016/j.jrmge.2015.03.005
  40. Žák, A., Beneš, M., Illangasekare, T.H., 2013. Analysis of model of soil freezing and thawing. IAENG International Journal of Applied Mathematics, 43, 3, 127–134.
  41. Žák, A., Beneš M., Illangasekare T.H., Trautz A.C., 2018a. Mathematical model of freezing in a porous medium at micro-scale. Commun. Comput. Phys., 24, 2, 557–575. https://doi.org/10.4208/cicp.OA-2017-0082
  42. Žák, A., Beneš, M., 2018b. Micro-scale model of thermomechanics in solidifying saturated porous media. Acta Phys. Pol. A., 134, 3, 678–682. https://doi.org/10.12693/APhysPolA.134.678
  43. Žák, A., Beneš, M., Illangasekare, T.H., 2023. Pore-scale model of freezing inception in a porous medium. Comput. Methods Appl. Mech. Engrg., 414, 116166. https://doi.org/10.1016/j.cma.2023.116166
DOI: https://doi.org/10.2478/johh-2024-0018 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 336 - 348
Submitted on: May 10, 2024
Accepted on: Jun 19, 2024
Published on: Aug 15, 2024
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Martina Sobotková, Alexandr Žák, Michal Beneš, Michal Sněhota, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.