Have a personal or library account? Click to login
Long-term field pH manipulation influence on microbial activity, water repellency and physical properties of soil Cover

Long-term field pH manipulation influence on microbial activity, water repellency and physical properties of soil

Open Access
|Aug 2024

References

  1. Abindaw, T., Hanyabui, E., Atiah, K., Akwasi, E.A., Ziblim, I.A., 2023. Influence of land use types on the distribution of selected soil properties in tropical soils of the Coastal Savanna zone. Heliyon, 9, e14002.
  2. Aguilera, P., Cumming, J., Oehl, F., Cornejo, P., Borie, F., 2015. Diversity of arbuscular mycorrhizal fungi in acidic soils and their contribution to aluminum phytotoxicity alleviation. In: Panda, S.K., Baluška, F. (Eds.): Aluminum Stress Adaptation in Plants. Springer, pp. 203–228.
  3. Ameyu, T., 2019. A Review on the potential effect of lime on soil properties and crop productivity improvements. J. Environ. Earth Sci., 9, 17–23.
  4. Bartram, K.A., Jiang, X., Lynch, M.D.J., Masella, A.P., Nicol, G.W., Dushoff, J., Neufeld, J.D., 2014. Exploring links between pH and bacterial community composition in soils from the Craibstone Experimental Farm. Microb. Ecol., 87, 403–415.
  5. Baxter, S., 2007. World Reference Base for Soil Resources. World Soil Resources Report 103. Food and Agriculture Organization of the United Nations, Rome, 132 p.
  6. Bonanomi, G., Motti, R., Abd-ElGawad, A.M., Idbella, M., 2024. Soil water repellency along elevation gradients: The role of climate, land use and soil chemistry. Geoderma 443, 116847.
  7. Brookes, P.C., Landman, A., Pruden, G., Jenkinson, D.S., 1985. Chloroform fumigation and the release of soil-nitrogen –a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem., 17, 837–842.
  8. Buczko, U, Bens, O., Hüttl, R.F., 2006. Tillage effects on hydraulic properties and macroporosity in silty and sandy soils. Soil Sci. Soc. Am. J., 70, 1998–2007.
  9. Chen, C., Jiang, Y.J., Sun, B., Zhou, H., Hallett, P.D., 2022. Organic manure and lime change water vapour sorption of a red soil by altering water repellency and specific surface area. Eur. J. Soil Sci., 73. DOI: 10.1111/ejss.13223
  10. DeBano, L.F., 2000. Water repellency in soils: a historical overview. J. Hydrol., 231–232, 4–32.
  11. Diehl, D., Bayer, J.V., Woche, S.K., Bryant, R., Doerr, S.H., Schaumann, G.E., 2010. Reaction of soil water repellency to artificially induced changes in soil pH. Geoderma, 158, 375–384.
  12. Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci. Rev., 51, 33–65.
  13. Ellerbrock, R.H., Gerke, H.H., 2004. Characterizing organic matter of soil aggregate coatings and biopores by Fourier transform infrared spectroscopy. Eur. J. Soil Soc., 55, 219–228.
  14. Fielding, D., Newey, S., Pakeman, R., 2022. Assessing the impacts of lime application to pastures on soils, biodiversity, and forage quality. The James Hutton Institute.
  15. Gao, Y., Lin, Q., Liu, H., Wu, H., Alamus, 2018. Water repellency as conditioned by physical and chemical parameters in grassland soil. Catena, 160, 310–320.
  16. Goebel, M.-O., Bachmann, J., Woche, S.K., Fischer, W.R., Horton, R., 2004. Water potential and aggregate size effects on contact angle and surface energy. Soil Sci. Soc. Am. J., 68, 383–393.
  17. Gong, X., Wang, S., Wang, Z., Jiang, Y., Hu, Z., Zheng, Y., Chen, X., Li, H., Hu, F., Liu, M., Scheu, S., 2019. Earthworms modify soil bacterial and fungal communities through enhancing aggregation and buffering pH. Geoderma, 347, 59–69.
  18. Hallett, P.D., Young, I.M., 1999. Changes to water repellence of soil aggregates caused by substrate-induced microbial activity. Eur. J. Soil Sci., 50, 35–40.
  19. Hallett, P.D., 2007. An introduction to soil water repellency. In: Gaskin, R.E. (Ed.): Proc. 8th Int. Symp. Adjuvants for Agro-chemicals. Hand Multimedia, Christchurch, New Zealand. 13 p. ISBN 978-0-473-12388-8
  20. Hallett, P.D., Gordon, D.C., Bengough, A.G., 2003. Plant influence on rhizosphere hydraulic properties: direct measurements using a miniaturized infiltrometer. New Phytol., 157, 597–603.
  21. Hallett, P.D., Karim, K.H., Bengough, A.G., Otten, W., 2013. Biophysics of the vadose zone: from reality to model systems and back again. Vadose Zone J., 12, 4.
  22. Herold, M.B., Baggs, E.M., Daniell, T.J., 2012. Fungal and bacterial denitrification are differently affected by long-term pH amendment and cultivation of arable soil. Soil Biol. Biochem., 54, 25–35.
  23. Hernández-Cáceres, D., Stokes, A., Angeles-Alvarez, G., Abadie, J., Anthelme, F., Bounous, M., Freschet, G.T., Roumet, C., Weemstra, M., Merino-Martín, L., Reverchon, F., 2022. Vegetation creates microenvironments that influence soil microbial activity and functional diversity along an elevation gradient. Soil Biol. Biochem., 165,108485.
  24. Holland, J.E., White, P.J., Glendining, M.J., Goulding, K.W.T., McGrath, S.P., 2019. Yield responses of arable crops to liming–An evaluation of relationships between yields and soil pH from a long-term liming experiment. Eur. J. Agr., 105, 176–188.
  25. Kemmitt, S.J., Wright, D., Goulding K.W.T., Jones, D.L., 2006. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol. Biochem., 38, 898–911.
  26. Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263.
  27. Lebron, I., Robinson, D.A., Oatham, M., Wuddivira, M.N, 2012. Soil water repellency and pH soil change under tropical pine plantations compared with native tropical forest. J. Hydrol., 414–415, 194–200.
  28. Mataix-Solera, J., Arcenegui, V., Guerrero, C., Mayoral, A.M., Morales, J., Gonzalez, J., Garcia-Orenes, F., Gomez, I., 2007. Water repellency under different plant species in a calcareous forest soil in a semiarid Mediterranean environment. Hydrol. Process., 21, 2300–2309.
  29. Msimbira, L.A., Smith, D.L., 2020. The roles of plant growth promoting microbes in enhancing plant tolerance to acidity and alkalinity stresses. Front. Sustain. Food Syst., 4, 106.
  30. Nicol, G.W., Leininger, S., Schleper, C., Prosser, J.I., 2008. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ. Microbiol., 10, 2966–2978.
  31. Neina, D., 2019. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci., 9, 2019.
  32. NOSCA, 1960. Guide to Experiments and Demonstrations at Craibstone 1960. Mearns Publications, Aberdeen, Scotland.
  33. Pansu, M., Gautheyrou, J., 2006. Handbook of Soil Analysis. Springer, New York, 993 p.
  34. Paton, G.I., Viventsova, E., Kumpene, J., Wilson, M.J., Weitz, H.J., Dawson, J.C., 2006. An ecotoxicity assessment of contaminated forest soils from the Kola Peninsula. Sci. Total Environ., 355, 106–117.
  35. Pettinger, N.A., 1935. Useful chart for plant teaching the relation of soil reaction to availability of plant nutrients to plants. Virginia Agr. Ext. Bul., 136, 1–19.
  36. Rillig, M.C., 2005. A connection between fungal hydrophobins and soil water repellency? Pedobiologia, 49, 395–399.
  37. Robles-Aguilar, A.A., Pang, J., Postma, J.A., Schrey, S.D., Lambers, H., Jablonowski, N.D., 2019. The effect of pH on morphological and physiological root traits of Lupinus angustifolius treated with struvite as a recycled phosphorus source. Plant Soil, 434, 65–78.
  38. Rousk, J., Brookes, P.C., Bååth, E., 2009. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl. Environ. Micro-biol., 149, 1589–1596.
  39. Rousk, J., Brookes, P.C., Bååth, E., 2011. Fungal and bacterial growth responses to N fertilization and pH in the 150-year 'Park Grass' UK grassland experiment. FEMS Microbiol. Ecol., 76, 89–99.
  40. Rücknagel, J., Hofmann, B., Paul, R., Christen, O., Hülsbergen, K.J., 2007. Estimating precompression stress of structured soils on the basis of aggregate density and dry bulk density. Soil Till. Res., 92, 213–220.
  41. Rye, C.F., Smettem, K.R.J., 2017. The effect of water repellent soil surface layers on preferential flow and bare soil evaporation. Geoderma 289, 142–149.
  42. Sándor, R., Iovino, M., Lichner, L., Alagna, V., Forster, D., Fraser, M., Kollár, J., Šurda, P., Nagy, V., Szabó, A., Fodor, N. 2021. Impact of climate, soil properties and grassland cover on soil water repellency. Geoderma, 383, 114780.
  43. Seaton, F.M., Jones, D.L., Creer, S., George, P.B.L., Smart, S.M., Lebron, I., Barrett, G., Emmett, B.A., Robinson, D.A., 2019. Plant and soil communities are associated with the response of soil water repellency to environmental stress. Sci. Total Environ., 687, 929–938.
  44. Schmidt, C.S., Agostini, F., Simon, A-M., Whyte, J., Townend, J., Leifert, C., Killham, K., Mullins, C., 2004. Influence of soil type and pH on the colonisation of sugar beet seedlings by antagonistic Pseudomonas and Bacillus strains, and on their control of Pythium damping-off. Plant Pathol., 110, 1025–1046.
  45. Singh, J., Schädler, M., Demetrio, W., Brown, G. G., Eisenhauer, N., 2020. Climate change effects on earthworms - a review. Soil Organ., 91,113–137.
  46. Spaccini, R., Piccolo, A., Conte, P., Haberhauer, G., Gerzabek, M.H., 2002. Increased soil organic carbon sequestration through hydrophobic protection by humic substances. Soil Biol. Biochem., 34, 1839–1851.
  47. Sparling, G.P., West, A.W., 1990. A comparison of gas chromatography and differential respirometer methods to measure soil respiration and to estimate the soil microbial biomass. Pedobiol., 34, 103–112.
  48. Woudt, B.D., 1959. Particle coatings affect the wettability of soils. J. Geophys. Res., 64, 263–267.
  49. Willoughby, C.M., Topp, C.F.E., Hallett, P.D., Stockdale, E.A., Walker, R.L., Hilton, A.J., Watson, C.A., 2023. Soil health metrics reflect yields in long-term cropping system experiments. Agron. Sustain. Dev., 43, 65.
  50. Young, I.M., Feeney, D.S., O’Donnell, A.G., Goulding, K.W.T., 2012. Fungi in century old managed soils could hold key to the development of soil water repellency. Soil. Biol. Biochem., 45, 125–127.
  51. Zeppenfeld, T., Balkenhol, N., Kóvacs, K. Carminati, A., 2017. Rhizosphere hydrophobicity: A positive trait in the competition for water. PloS one, 12, e0182188
DOI: https://doi.org/10.2478/johh-2024-0015 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 292 - 301
Submitted on: Mar 19, 2024
Accepted on: Jun 12, 2024
Published on: Aug 15, 2024
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Anastasia Fountouli, Graeme I. Paton, Christine A. Watson, Robin L. Walker, Annette Raffan, Paul D. Hallett, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.