References
- Abindaw, T., Hanyabui, E., Atiah, K., Akwasi, E.A., Ziblim, I.A., 2023. Influence of land use types on the distribution of selected soil properties in tropical soils of the Coastal Savanna zone. Heliyon, 9, e14002.
- Aguilera, P., Cumming, J., Oehl, F., Cornejo, P., Borie, F., 2015. Diversity of arbuscular mycorrhizal fungi in acidic soils and their contribution to aluminum phytotoxicity alleviation. In: Panda, S.K., Baluška, F. (Eds.): Aluminum Stress Adaptation in Plants. Springer, pp. 203–228.
- Ameyu, T., 2019. A Review on the potential effect of lime on soil properties and crop productivity improvements. J. Environ. Earth Sci., 9, 17–23.
- Bartram, K.A., Jiang, X., Lynch, M.D.J., Masella, A.P., Nicol, G.W., Dushoff, J., Neufeld, J.D., 2014. Exploring links between pH and bacterial community composition in soils from the Craibstone Experimental Farm. Microb. Ecol., 87, 403–415.
- Baxter, S., 2007. World Reference Base for Soil Resources. World Soil Resources Report 103. Food and Agriculture Organization of the United Nations, Rome, 132 p.
- Bonanomi, G., Motti, R., Abd-ElGawad, A.M., Idbella, M., 2024. Soil water repellency along elevation gradients: The role of climate, land use and soil chemistry. Geoderma 443, 116847.
- Brookes, P.C., Landman, A., Pruden, G., Jenkinson, D.S., 1985. Chloroform fumigation and the release of soil-nitrogen –a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem., 17, 837–842.
- Buczko, U, Bens, O., Hüttl, R.F., 2006. Tillage effects on hydraulic properties and macroporosity in silty and sandy soils. Soil Sci. Soc. Am. J., 70, 1998–2007.
- Chen, C., Jiang, Y.J., Sun, B., Zhou, H., Hallett, P.D., 2022. Organic manure and lime change water vapour sorption of a red soil by altering water repellency and specific surface area. Eur. J. Soil Sci., 73. DOI: 10.1111/ejss.13223
- DeBano, L.F., 2000. Water repellency in soils: a historical overview. J. Hydrol., 231–232, 4–32.
- Diehl, D., Bayer, J.V., Woche, S.K., Bryant, R., Doerr, S.H., Schaumann, G.E., 2010. Reaction of soil water repellency to artificially induced changes in soil pH. Geoderma, 158, 375–384.
- Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci. Rev., 51, 33–65.
- Ellerbrock, R.H., Gerke, H.H., 2004. Characterizing organic matter of soil aggregate coatings and biopores by Fourier transform infrared spectroscopy. Eur. J. Soil Soc., 55, 219–228.
- Fielding, D., Newey, S., Pakeman, R., 2022. Assessing the impacts of lime application to pastures on soils, biodiversity, and forage quality. The James Hutton Institute.
- Gao, Y., Lin, Q., Liu, H., Wu, H., Alamus, 2018. Water repellency as conditioned by physical and chemical parameters in grassland soil. Catena, 160, 310–320.
- Goebel, M.-O., Bachmann, J., Woche, S.K., Fischer, W.R., Horton, R., 2004. Water potential and aggregate size effects on contact angle and surface energy. Soil Sci. Soc. Am. J., 68, 383–393.
- Gong, X., Wang, S., Wang, Z., Jiang, Y., Hu, Z., Zheng, Y., Chen, X., Li, H., Hu, F., Liu, M., Scheu, S., 2019. Earthworms modify soil bacterial and fungal communities through enhancing aggregation and buffering pH. Geoderma, 347, 59–69.
- Hallett, P.D., Young, I.M., 1999. Changes to water repellence of soil aggregates caused by substrate-induced microbial activity. Eur. J. Soil Sci., 50, 35–40.
- Hallett, P.D., 2007. An introduction to soil water repellency. In: Gaskin, R.E. (Ed.): Proc. 8th Int. Symp. Adjuvants for Agro-chemicals. Hand Multimedia, Christchurch, New Zealand. 13 p. ISBN 978-0-473-12388-8
- Hallett, P.D., Gordon, D.C., Bengough, A.G., 2003. Plant influence on rhizosphere hydraulic properties: direct measurements using a miniaturized infiltrometer. New Phytol., 157, 597–603.
- Hallett, P.D., Karim, K.H., Bengough, A.G., Otten, W., 2013. Biophysics of the vadose zone: from reality to model systems and back again. Vadose Zone J., 12, 4.
- Herold, M.B., Baggs, E.M., Daniell, T.J., 2012. Fungal and bacterial denitrification are differently affected by long-term pH amendment and cultivation of arable soil. Soil Biol. Biochem., 54, 25–35.
- Hernández-Cáceres, D., Stokes, A., Angeles-Alvarez, G., Abadie, J., Anthelme, F., Bounous, M., Freschet, G.T., Roumet, C., Weemstra, M., Merino-Martín, L., Reverchon, F., 2022. Vegetation creates microenvironments that influence soil microbial activity and functional diversity along an elevation gradient. Soil Biol. Biochem., 165,108485.
- Holland, J.E., White, P.J., Glendining, M.J., Goulding, K.W.T., McGrath, S.P., 2019. Yield responses of arable crops to liming–An evaluation of relationships between yields and soil pH from a long-term liming experiment. Eur. J. Agr., 105, 176–188.
- Kemmitt, S.J., Wright, D., Goulding K.W.T., Jones, D.L., 2006. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol. Biochem., 38, 898–911.
- Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263.
- Lebron, I., Robinson, D.A., Oatham, M., Wuddivira, M.N, 2012. Soil water repellency and pH soil change under tropical pine plantations compared with native tropical forest. J. Hydrol., 414–415, 194–200.
- Mataix-Solera, J., Arcenegui, V., Guerrero, C., Mayoral, A.M., Morales, J., Gonzalez, J., Garcia-Orenes, F., Gomez, I., 2007. Water repellency under different plant species in a calcareous forest soil in a semiarid Mediterranean environment. Hydrol. Process., 21, 2300–2309.
- Msimbira, L.A., Smith, D.L., 2020. The roles of plant growth promoting microbes in enhancing plant tolerance to acidity and alkalinity stresses. Front. Sustain. Food Syst., 4, 106.
- Nicol, G.W., Leininger, S., Schleper, C., Prosser, J.I., 2008. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ. Microbiol., 10, 2966–2978.
- Neina, D., 2019. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci., 9, 2019.
- NOSCA, 1960. Guide to Experiments and Demonstrations at Craibstone 1960. Mearns Publications, Aberdeen, Scotland.
- Pansu, M., Gautheyrou, J., 2006. Handbook of Soil Analysis. Springer, New York, 993 p.
- Paton, G.I., Viventsova, E., Kumpene, J., Wilson, M.J., Weitz, H.J., Dawson, J.C., 2006. An ecotoxicity assessment of contaminated forest soils from the Kola Peninsula. Sci. Total Environ., 355, 106–117.
- Pettinger, N.A., 1935. Useful chart for plant teaching the relation of soil reaction to availability of plant nutrients to plants. Virginia Agr. Ext. Bul., 136, 1–19.
- Rillig, M.C., 2005. A connection between fungal hydrophobins and soil water repellency? Pedobiologia, 49, 395–399.
- Robles-Aguilar, A.A., Pang, J., Postma, J.A., Schrey, S.D., Lambers, H., Jablonowski, N.D., 2019. The effect of pH on morphological and physiological root traits of Lupinus angustifolius treated with struvite as a recycled phosphorus source. Plant Soil, 434, 65–78.
- Rousk, J., Brookes, P.C., Bååth, E., 2009. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl. Environ. Micro-biol., 149, 1589–1596.
- Rousk, J., Brookes, P.C., Bååth, E., 2011. Fungal and bacterial growth responses to N fertilization and pH in the 150-year 'Park Grass' UK grassland experiment. FEMS Microbiol. Ecol., 76, 89–99.
- Rücknagel, J., Hofmann, B., Paul, R., Christen, O., Hülsbergen, K.J., 2007. Estimating precompression stress of structured soils on the basis of aggregate density and dry bulk density. Soil Till. Res., 92, 213–220.
- Rye, C.F., Smettem, K.R.J., 2017. The effect of water repellent soil surface layers on preferential flow and bare soil evaporation. Geoderma 289, 142–149.
- Sándor, R., Iovino, M., Lichner, L., Alagna, V., Forster, D., Fraser, M., Kollár, J., Šurda, P., Nagy, V., Szabó, A., Fodor, N. 2021. Impact of climate, soil properties and grassland cover on soil water repellency. Geoderma, 383, 114780.
- Seaton, F.M., Jones, D.L., Creer, S., George, P.B.L., Smart, S.M., Lebron, I., Barrett, G., Emmett, B.A., Robinson, D.A., 2019. Plant and soil communities are associated with the response of soil water repellency to environmental stress. Sci. Total Environ., 687, 929–938.
- Schmidt, C.S., Agostini, F., Simon, A-M., Whyte, J., Townend, J., Leifert, C., Killham, K., Mullins, C., 2004. Influence of soil type and pH on the colonisation of sugar beet seedlings by antagonistic Pseudomonas and Bacillus strains, and on their control of Pythium damping-off. Plant Pathol., 110, 1025–1046.
- Singh, J., Schädler, M., Demetrio, W., Brown, G. G., Eisenhauer, N., 2020. Climate change effects on earthworms - a review. Soil Organ., 91,113–137.
- Spaccini, R., Piccolo, A., Conte, P., Haberhauer, G., Gerzabek, M.H., 2002. Increased soil organic carbon sequestration through hydrophobic protection by humic substances. Soil Biol. Biochem., 34, 1839–1851.
- Sparling, G.P., West, A.W., 1990. A comparison of gas chromatography and differential respirometer methods to measure soil respiration and to estimate the soil microbial biomass. Pedobiol., 34, 103–112.
- Woudt, B.D., 1959. Particle coatings affect the wettability of soils. J. Geophys. Res., 64, 263–267.
- Willoughby, C.M., Topp, C.F.E., Hallett, P.D., Stockdale, E.A., Walker, R.L., Hilton, A.J., Watson, C.A., 2023. Soil health metrics reflect yields in long-term cropping system experiments. Agron. Sustain. Dev., 43, 65.
- Young, I.M., Feeney, D.S., O’Donnell, A.G., Goulding, K.W.T., 2012. Fungi in century old managed soils could hold key to the development of soil water repellency. Soil. Biol. Biochem., 45, 125–127.
- Zeppenfeld, T., Balkenhol, N., Kóvacs, K. Carminati, A., 2017. Rhizosphere hydrophobicity: A positive trait in the competition for water. PloS one, 12, e0182188