References
- Albuquerque, M., Eler, F., Camargo, H., Compan, A., Cruz, D., Pedreira, C., 2018. Estimation of capillary pressure curves from centrifuge measurements using inverse methods. In: Proc. Oil & Gas Expo and Conference, Rio de Janeiro, Brazil. API RP 40, 1998.
- American Petroleum Institute (API) RP-40 recommended practices for core analysis. Washington, DC, USA, 220 p.
- Bittelli, M., Flury, M., 2009. Errors in water retention curves determined with pressure plates. Soil Sci. Soc. Am. J., 73, 1453–1460. https://doi.org/10.2136/sssaj2008.0082
- Bui, L.T., Mori, Y., 2021. Pinhole multistep centrifuge outflow method for estimating unsaturated hydraulic properties with small volume soil samples. Water, 2021, 13, 1169. https://doi.org/10.3390/w13091169
- Coates, G.G., Borrello, J.A., McFarland, E.G., Mirowitz, S.A., Brown, J.J., 1998. Hepatic T2-weighted MRI: A prospective comparison of sequences, including breath-hold, half-Fourier turbo spin echo (HASTE). J. Magn. Reson. Imaging, 8, 3, 642–649. https://doi.org/10.1002/jmri.1880080319
- Caputo, M.C., Nimmo, J.R., 2005. Quasi-steady centrifuge method for unsaturated hydraulic properties. Water Resour. Res., 41, 11, W11504. https://doi.org/10.1029/2005WR003957
- Carr, H.Y., Purcell, E.M., 1954. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev., 94, 3, 630. https://doi.org/10.1103/PhysRev.94.630
- Chen, Q., Balcom, B.J., 2005. Measurement of rock-core capillary pressure curves using a single-speed centrifuge and one-dimensional magnetic-resonance imaging. J. Chem. Phys., 122, 21, 214720. https://doi.org/10.1063/1.1924547
- Chen, P., 2014. Enhanced oil recovery in fractured vuggy carbonates. PhD Thesis. The University of Texas at Austin, USA.
- Dane, J.H., Hopmans, J.W., 2002. Water retention and storage: Laboratory. In: Dane, J.H., Topp, G. (Eds.): Methods of Soil Analysis. Part 4. Physical Methods. SSSA Book Ser. 5. Soil Science Society of America, Madison, WI, USA, pp. 675–720. https://doi.org/10.2136/sssabookser5.4.c25
- Dias, C.H., Eler, F.M., Cordeiro, C., Ramirez, M.G., Soares, J.A., Nunes, D., Lima, M.C., Couto, P., 2023.Effects of pore size and pore connectivity on trapped gas saturation. J. Hydrol. Hydromech., 71, 1, 11–21. https://doi.org/10.2478/johh-2022-0042
- Durner, W., 1994. Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour. Res. 30, 211–223. https://doi.org/10.1029/93WR02676
- Favvas, E.P., Sapalidis, A.A., Stefanopoulos, K.L., Romanos, G.E., Kanellopoulos, N.K., Kargiotis, E.K., Mitropoulos, A.C., 2009. Characterization of carbonate rocks by combination of scattering, porosimetry and permeability techniques. Microporous Mesoporous Mater., 120, 109–114. https://doi.org/10.1016/j.micromeso.2008.09.015
- Gee, G.W., Campbell, M.D., Campbell, G.S., Campbell, J.H., 1992. Rapid measurement of low soil water potentials using a water activity meter. Soil Sci. Soc. Am. J., 56, 1068–1070. https://doi.org/10.2136/sssaj1992.03615995005600040010x
- Hoerlle, F.O., Rios, E.H., Silva, W.G.A.L., Pontedeiro, E.M.B.D., Lima, M.C.O., Corbett, P.W.M., Alves, J.L.D., Couto, P., 2018. Nuclear magnetic resonance to characterize the pore system of coquinas from Morro do Chaves Formation, Sergipe-Alagoas basin, Brazil. Revista Brasileira de Geofísica, 36, 3, 317–324. http://dx.doi.org/10.22564/rbgf.v36i3.1960
- Hosseinzadeh, S., Kadkhodaie, A., Yarmohammadi, S., 2020. NMR derived capillary pressure and relative permeability curves as an aid in rock typing of carbonate reservoirs. J. Pet. Sci. Eng., 184, 106593. https://doi.org/10.1016/j.petrol.2019.106593
- Kumahor, S.K., de Rooij, G.H., Schlüter, S., Vogel, H.-J., 2015. Water flow and solute transport in unsaturated sand: A comprehensive experimental approach. Vadose Zone J., 14, 2. https://doi.org/10.2136/vzj2014.08.0105
- Lima, M.C.O., Pontedeiro, E.M., Ramirez, M.G., Boyd, A., van Genuchten, M.Th., Borghi, L., Couto, P., Raoof, A., 2020. Petrophysical correlations for permeability of coquinas (carbonate rocks). Transp. Porous Media 135, 287–308. https://doi.org/10.1007/s11242-020-01474-1
- Lima, M.C.O., Pontedeiro, E.M., Ramirez, M.G., Favoreto, J., Santos, H.N., van Genuchten, M.Th., Raoof, A., 2022. Impacts of mineralogy on petrophysical properties. Transp. Porous Media, 145, 103–125. https://doi.org/10.1007/s11242-022-01829-w
- Lipovetsky, T., Zhuang, L., Teixeira, W.G., Boyd, A., May Pontedeiro, E., Moriconi, L., Alves, J.L.D., Couto, P., van Genuchten, M.Th, 2020. HYPROP measurements of the un-saturated hydraulic properties of a carbonate rock sample. J. Hydrol., 591, 125706. https://doi.org/10.1016/j.jhydrol.2020.125706
- Liu, Y., Liu, Y., Zhang, Q., Li, C., Feng, Y., Wang, Y., Xue, Y, Ma, H., 2019. Petrophysical static rock typing for carbonate reservoirs based on mercury injection capillary pressure curves using principal component analysis. J. Pet. Sci. Eng., 181, 106175. https://doi.org/10.1016/j.petrol.2019.06.039
- Manjunath, G.L., 2022. Estimating stress percolation patterns in hydraulic fractured Gondwana coal using Raman spectroscopy. J. Nat. Gas Sci. Eng., 100, 104469. https://doi.org/10.1016/j.petrol.2019.06.039
- Manjunath, G.L., Akono, A. T., Haljasmaa, I., Jha, B., 2023. Role of CO2 in geomechanical alteration of Morrow Sandstone across micro–meso scales. Int. J. Rock Mech. Min. Sci., 163, 105311. https://doi.org/10.1016/j.ijrmms.2022.105311
- METER, 2015. Operation Manual HYPROP 2. METER Group AG, Munich, Germany.
- METER, 2021. WP4C Manual. METER Group AG, Munich, Germany.
- Peters, A., Durner, W., 2008. Simplified evaporation method for determining soil hydraulic properties. J. Hydrol., 356, 1–2, 147–162. https://doi.org/10.1016/j.jhydrol.2008.04.016
- Peters, A., Iden, S.C., Durner, W., 2015. Revisiting the simplified evaporation method: Identification of hydraulic functions considering vapor, film and corner flow. J. Hydrol., 527, 531–542. https://doi.org/10.1016/j.jhydrol.2015.05.020
- Priesack, E., Durner, W., 2006. Closed-form expression for the multi-modal unsaturated conductivity function. Vadose Zone J., 5, 1, 121–124. https://doi.org/10.2136/vzj2005.0066
- Rahmati, M., Pohlmeier, A., Abasiyan, S.M.A., Weihermüller, L., Vereecken, H., 2019. Water retention and pore size distribution of a biopolymeric-amended loam soil. Vadose Zone J., 18:180205. https://doi.org/10.2136/vzj2018.11.0205
- Schelle, H., Heise, L., Janicke, K., Durner, W., 2013. Water retention characteristics of soils over the whole moisture range: a comparison of laboratory methods. Eur. J. Soil Sci., 64, 814–821. https://doi.org/10.1111/ejss.12108
- Schindler, U., 1980. Ein Schnellverfahren zur Messung der Wasserleitfähigkeit im teilgesättigten Boden an Stechzylinderproben. Arch. Acker-u. Pflanzenbau u. Bodenkd. Berlin, 24, 1–7.
- Schindler, U., Durner, W., Von Unold, G., Mueller, L., Wieland, R., 2010. The evaporation method: Extending the measurement range of soil hydraulic properties using the air-entry pressure of the ceramic cup. J. Plant Nutr. Soil Sci., 173, 563–572. https://doi.org/10.1002/jpln.200900201
- Schneider, M., Goss, K.U., 2012. Prediction of the water sorption isotherm in air dry soils. Geoderma, 170, 64–69. https://doi.org/10.1016/j.geoderma.2011.10.008
- Shikhov, I., Arns, C.H., 2015. Evaluation of capillary pressure methods via digital rock simulations. Transp. Porous Media, 107, 623–640. https://doi.org/10.1007/s11242-015-0459-z
- Šimůnek, J., van Genuchten, M.Th., Wendroth, O., 1998. Parameter estimation analysis of the evaporation method for determining soil hydraulic properties. Soil Sci. Soc. Am. J., 62, 4, 894–905. https://doi.org/10.2136/sssaj1998.03615995006200040007x
- Solone, R., Bittelli, M., Tomei, F., Morari, F., 2012. Errors in water retention curves determined with pressure plates: Effects on the soil water balance. J. Hydrol., 470, 65–74. https://doi.org/10.1016/j.jhydrol.2012.08.017
- Souza, A., Carneiro, G., Zielinski, L., Polinski, R., Schwartz, L., Hürlimann, M.D., Boyd, A., Rios, E.H., dos Santos, B.C.C., Trevizan, W.A., Machado, V.F., de Vasconcellos Azeredo, R.B., 2013. Permeability prediction improvement using 2D NWR diffusion-T2 maps. In: Proc. PWLA 54th Annual Logging Symposium, New Orleans, Louisiana, USA.
- Turturro, A.C., Caputo, M.C., Gerke, H.H., 2022. Mercury intrusion porosimetry and centrifuge methods for extended-range retention curves of soil and porous rock samples. Vadose Zone J., 21, 1–11. https://doi.org/10.1002/vzj2.20176
- van den Berg, E.H., Perfect, E., Tu, C., Knappe, P.S.K., Leao, T.P., Donat, R.W., 2009. Unsaturated hydraulic conductivity measurements with centrifuges: A review. Vadose Zone J., 8, 3, 531–547. https://doi.org/10.2136/vzj2008.0119
- van Genuchten, M.Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
- van Genuchten, M.Th., Leij F.J., Yates, S.R., 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. Report No. EPA/600/2-91/065. R.S. Kerr Environmental Research Laboratory, U.S. Environmental Protection Agency, Ada, OK. 85. https://www.pc-progress.com/Documents/programs/retc.pdf
- Wendroth, O., Ehlers, W., Hopmans, J.W., Kage, H., Halbertsma, J., Wösten, J.H.M., 1993. Reevaluation of the evaporation method for determining hydraulic functions in unsaturated soils. Soil Sci. Soc. Am. J., 57, 6, 1436–1443. https://doi.org/10.2136/sssaj1993.03615995005700060007x
- Yao, Y., Liu, D., 2012. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals. Fuel, 95, 152–158. https://doi.org/10.1016/j.fuel.2011.12.039
- Zhuang, L., Bezerra Coelho, C.R., Hassanizadeh, S.M., van Genuchten, M.Th., 2017a. Analysis of the hysteretic hydraulic properties of unsaturated soil. Vadose Zone J., 16, 5. https://doi.org/10.2136/vzj2016.11.0115
- Zhuang, L., Hassanizadeh, S.M., Qin, C.-Z., de Waal, A., 2017b. Experimental investigation of hysteretic dynamic capillarity effect in unsaturated flow. Water Resour. Res., 53. https://doi.org/10.1002/2017WR020895