Have a personal or library account? Click to login
Flow resistance of emergent rigid vegetation in steady flow Cover

Flow resistance of emergent rigid vegetation in steady flow

Open Access
|May 2024

References

  1. Aberle, J., Järvelä, J., 2013. Flow resistance of emergent rigid and flexible floodplain vegetation. J. Hydraul. Res., 51, 33–45. https://doi.org/10.1080/00221686.2012.754795
  2. Afzalimehr, H., Dey, S., 2009. Influence of bank vegetation and gravel bed on velocity and Reynolds stress distributions. Int. J. Sediment Res., 24, 236–246. https://doi.org/10.1016/S1001-6279(09)60030-5
  3. Alekseevskiy, N.I., Berkovich, K.M., Chalov, R.S., 2008. Erosion, sediment transportation and accumulation in rivers. Int. J. Sediment Res., 23, 93–105. https://doi.org/10.1016/S1001-6279(08)60009-8
  4. Armanini, A., Righetti, M., Grisenti, P., 2005. Direct measurement of vegetation resistance in prototype scale. J. Hydraul. Res., 43, 481–487. https://doi.org/10.1080/00221680509500146
  5. Baptist, M.J., Babovic, V., Rodríguez Uthurburu, J., Keijzer, M., Uittenbogaard, R.E., Mynett, A., Verwey, A., 2007. On inducing equations for vegetation resistance. J. Hydraul. Res., 45, 435–450. https://doi.org/10.1080/00221686.2007.9521778
  6. Ben Meftah, M., Mossa, M., 2016. A modified log-law of flow velocity distribution in partly obstructed open channels. Environ. Fluid Mech., 16, 453–479. https://doi.org/10.1007/s10652-015-9439-7
  7. Bennett, S.J., Pirim, T., Barkdoll, B.D., 2002. Using simulated emergent vegetation to alter stream flow direction within a straight experimental channel. Geomorphology, 44, 115–126. https://doi.org/10.1016/S0169-555X(01)00148-9
  8. Chapman, J.A., Wilson, B.N., Gulliver, J.S., 2015. Drag force parameters of rigid and flexible vegetal elements: drag resistance from flexible vegetal elements. Water Resour. Res., 51, 3292–3302. https://doi.org/10.1002/2014WR015436
  9. Cheng, N.S., 2011. Representative roughness height of submerged vegetation: representative roughness height of submerged vegetation. Water Resour. Res., 47. https://doi.org/10.1029/2011WR010590
  10. Cheng, N.S., Nguyen, H.T., 2011. Hydraulic radius for evaluating resistance induced by simulated emergent vegetation in open-channel flows. J. Hydraul. Eng., 137, 995–1004. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000377
  11. D’Ippolito, A., Lauria, A., Alfonsi, G., Calomino, F., 2019. Investigation of flow resistance exerted by rigid emergent vegetation in open channel. Acta Geophys., 67, 971–986. https://doi.org/10.1007/s11600-019-00280-8
  12. Fathi-Maghadam, M., Kouwen, N., 1997. Nonrigid, nonsubmerged, vegetative roughness on floodplains. J. Hydraul. Eng., 123, 51–57. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:1(51)
  13. Gu, F.F., Ni, H.G., Qi, D.M., 2007. Roughness coefficient for unsubmerged and submerged reed. J. Hydrodyn., 19, 421–428. https://doi.org/10.1016/S1001-6058(07)60135-8
  14. Gurnell, A.M., Bertoldi, W., Corenblit, D., 2012. Changing river channels: The roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth Sci. Rev., 111, 129–141. https://doi.org/10.1016/j.earscirev.2011.11.005
  15. Huai, W.X., Chen, Z.B., Han, J., Zhang, L.X., Zeng, Y.H., 2009a. Mathematical model for the flow with submerged and emerged rigid vegetation. J. Hydrodyn., 21, 722–729. https://doi.org/10.1016/S1001-6058(08)60205-X
  16. Huai, W.X., Shi, H.R., Song, S.W., Ni, S.Q., 2018. A simplified method for estimating the longitudinal dispersion coefficient in ecological channels with vegetation. Ecol. Indic., 92, 91–98. https://doi.org/10.1016/j.ecolind.2017.05.015
  17. Huai, W.X., Xue, W.Y., Qian, Z.D., 2015. Large-eddy simulation of turbulent rectangular open-channel flow with an emergent rigid vegetation patch. Adv. Water Resour., 80, 30–42. https://doi.org/10.1016/j.advwatres.2015.03.006
  18. Huai, W.X., Zeng, Y.H., Xu, Z.G., Yang, Z.H., 2009b. Threelayer model for vertical velocity distribution in open channel flow with submerged rigid vegetation. Adv. Water Resour., 32, 487–492. https://doi.org/10.1016/j.advwatres.2008.11.014
  19. Hui, E.Q., Hu, X.E., Jiang, C., Ma, F.K., Zhu, Z.D., 2010. A study of drag coefficient related with vegetation based on the flume experiment. J. Hydrodyn., 22, 329–337. https://doi.org/10.1016/S1001-6058(09)60062-7
  20. James, C.S., 2021. Flow resistance in channels with large emergent roughness elements. J. S. Afr. Inst. Civ. Eng., 63, 1–9. https://doi.org/10.17159/2309-8775/2021/v63n4a1
  21. James, C.S., Birkhead, A.L., Jordanova, A.A., O’Sullivan, J.J., 2004. Flow resistance of emergent vegetation. J. Hydraul. Res., 42, 390–398. https://doi.org/10.1080/00221686.2004.9728404
  22. Järvelä, J., 2002. Flow resistance of flexible and stiff vegetation: a flume study with natural plants. J. Hydrol., 269, 44–54. https://doi.org/10.1016/S0022-1694(02)00193-2
  23. Jordanova, A., James, C., 2003. Experimental study of bed load transport through emergent vegetation. J. Hydraul. Eng.- ASCE, 129, 474–478. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:6(474)
  24. Jordanova, A.A., James, C.S., Birkhead, A.L., 2006. Practical estimation of flow resistance through emergent vegetation. Proc. Inst. Civil. Eng.-Water Manag., 159, 173–181.
  25. Klopstra, D., Barneveld, H.J., Noortwijk, J.M.V., Velzen, E.H.V., 1997. Analytical model for hydraulic roughness of submerged vegetation. In: Proc. 27th Congress of the International Association of Hydraulic Research, ASCE, San Francisco, USA, pp. 775–780.
  26. Kothyari, U.C., Hayashi, K., Hashimoto, H., 2009. Drag coefficient of unsubmerged rigid vegetation stems in open channel flows. J. Hydraul. Res., 47, 691–699. https://doi.org/10.3826/jhr.2009.3283
  27. Kouwen, N., Fathi-Moghadam, M., 2000. Friction factors for coniferous trees along rivers. J. Hydraul. Eng., 126, 732–740. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:10(732)
  28. Kumar, P., Sharma, A., 2022. Experimental investigation of 3D flow properties around emergent rigid vegetation. Ecohydrol., 15. https://doi.org/10.1002/eco.2474
  29. Li, S.L., Shi, H.R., Xiong, Z.W., Huai, W.X., Cheng, N.S., 2015. New formulation for the effective relative roughness height of open channel flows with submerged vegetation. Adv. Water Resour., 86, 46–57. https://doi.org/10.1016/j.advwatres.2015.09.018
  30. Li, Y.P., Anim, D.O., Wang, Y., Tang, C.Y., Du, W., Yu, Z.B., Acharya, K., 2014. An open-channel flume study of flow characteristics through a combined layer of submerged and emerged flexible vegetation: flow characteristics through submerged and emerged flexible vegetation. Ecohydrol., 7, 633–647. https://doi.org/10.1002/eco.1384
  31. Liu, D., Diplas, P., Fairbanks, J.D., Hodges, C.C., 2008. An experimental study of flow through rigid vegetation. J. Geophys. Res., 113, F04015. https://doi.org/10.1029/2008JF001042
  32. Liu, M.Y., Huai, W.X., Yang, Z.H., Zeng, Y.H., 2020. A genetic programming-based model for drag coefficient of emergent vegetation in open channel flows. Adv. Water Resour., 140, 103582. https://doi.org/10.1016/j.advwatres.2020.103582
  33. López, F., García, M.H., 2001. Mean flow and turbulence structure of open-channel flow through non-emergent vegetation. J. Hydraul., Eng. 127, 392–402. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:5(392)
  34. Michioku, K., Kometani, S., Uotani, T., Kanda, K., Irie, Y., Yanagida, K., 2014. Analysis of equivalent Manning’s roughness coefficient for trees vegetated on floodplain. In: Proc. 7th Int. Conf. on Fluvial Hydraulics (River Flow), pp. 563–570.
  35. Millar, R.G., 2000. Influence of bank vegetation on alluvial channel patterns. Water Resour. Res., 36, 1109–1118. https://doi.org/10.1029/1999WR900346
  36. Nezu, I., Sanjou, M., 2008. Turburence structure and coherent motion in vegetated canopy open-channel flows. J. Hydro-Environ. Res., 2, 62–90. https://doi.org/10.1016/j.jher.2008.05.003
  37. Nikora, N., Nikora, V., O’Donoghue, T., 2013. Velocity profiles in vegetated open-channel flows: combined effects of multiple mechanisms. J. Hydraul. Eng., 139, 1021–1032. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000779
  38. Noarayanan, L., Murali, K., Sundar, V., 2012. Manning’s ‘n’ coefficient for flexible emergent vegetation in tandem configuration. J. Hydro-Environ. Res., 6, 51–62. https://doi.org/10.1016/j.jher.2011.05.002
  39. Osterkamp, W.R., Hupp, C.R., 2010. Fluvial processes and vegetation – Glimpses of the past, the present, and perhaps the future. Geomorphology, 116, 274–285. https://doi.org/10.1016/j.geomorph.2009.11.018
  40. Poggi, D., Krug, C., Katul, G.G., 2009. Hydraulic resistance of submerged rigid vegetation derived from first-order closure models: hydraulic resistance of submerged rigid vegetation. Water Resour. Res., 45. https://doi.org/10.1029/2008WR007373
  41. Rowiński, P.M., Kubrak, J., 2002. A mixing-length model for predicting vertical velocity distribution in flows through emergent vegetation. Hydrol. Sci., J. 47, 893–904. https://doi.org/10.1080/02626660209492998
  42. Schlichting, H., Gersten, K., 1979. Boundary-Layer Theory. McGraw-Hill, New York.
  43. Stephan, U., Gutknecht, D., 2002. Hydraulic resistance of submerged flexible vegetation. J. Hydrol., 269, 27–43. https://doi.org/10.1016/S0022-1694(02)00192-0
  44. Stoesser, T., Kim, S.J., Diplas, P., 2010. Turbulent flow through idealized emergent vegetation. J. Hydraul. Eng. 136, 1003–1017. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000153
  45. Stone, B.M., Shen, H.T., 2002. Hydraulic resistance of flow in channels with cylindrical roughness. J. Hydraul. Eng., 128, 500–506. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(500)
  46. Tanino, Y., Nepf, H.M., 2008. Laboratory investigation of mean drag in a random array of rigid, emergent cylinders. J. Hydraul. Eng., 134, 34–41. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:1(34)
  47. Tang, H.W., Yan, J., Xiao, Y., Lu, S.Q.,2007. Manning’s roughness coefficient of vegetated channels. J. Hydraul. Eng., 38, 11, 1347–1353. (In Chinese.)
  48. Tinoco, R.O., Cowen, E.A., 2013. The direct and indirect measurement of boundary stress and drag on individual and complex arrays of elements. Exp. Fluids, 54, 1509. https://doi.org/10.1007/s00348-013-1509-3
  49. Vargas-Luna, A., Crosato, A., Calvani, G., Uijttewaal, W.S.J., 2016. Representing plants as rigid cylinders in experiments and models. Adv. Water Resour., 93, 205–222. https://doi.org/10.1016/j.advwatres.2015.10.004
  50. Wang, H., Tang, H.W., Yuan, S.Y., Lv, S.Q., Zhao, X.Y., 2014. An experimental study of the incipient bed shear stress partition in mobile bed channels filled with emergent rigid vegetation. Sci. China-Technol. Sci., 57, 1165–1174. https://doi.org/10.1007/s11431-014-5549-6
  51. Wang, J.S., Liu, X.G., Min, F.Y., Dai, J., Jiang, X., 2022. Turbulence structure and longitudinal velocity distribution of open channel flows with reedy emergent vegetation. Ecohydrol., 15. https://doi.org/10.1002/eco.2352
  52. Wohl, E., Angermeier, P.L., Bledsoe, B., Kondolf, G.M., MacDonnell, L., Merritt, D.M., Palmer, M.A., Poff, N.L., Tarboton, D., 2005. River restoration: opinion. Water Resour. Res., 41. https://doi.org/10.1029/2005WR003985
  53. Wu, F.C., Shen, H.W., Chou, Y.J., 1999. Variation of roughness coefficients for unsubmerged and submerged vegetation. J. Hydraul. Eng., 125, 934–942. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:9(934)
  54. Wu, F.S., 2008. Characteristics of flow resistance in open channels with non-submerged rigid vegetation. J. Hydrodyn., 20, 239–245. https://doi.org/10.1016/S1001-6058(08)60052-9
  55. Wu, W.M., He, Z.G., 2009. Effects of vegetation on flow conveyance and sediment transport capacity. Int. J. Sediment Res., 24, 247–259. https://doi.org/10.1016/S1001-6279(10)60001-7
  56. Yang, Z.H., Li, D., Huai, W.X., Liu, J.H., 2019. A new method to estimate flow conveyance in a compound channel with vegetated floodplains based on energy balance. J. Hydrol., 575, 921–929. https://doi.org/10.1016/j.jhydrol.2019.05.078
  57. Zhao, K.F., Cheng, N.S., Huang, Z.H., 2014a. Experimental study of free-surface fluctuations in open-channel flow in the presence of periodic cylinder arrays. J. Hydraul. Res., 52, 465–475. https://doi.org/10.1080/00221686.2014.880858
  58. Zhao, K.F., Cheng, N.S., Wang, X.K., Tan, S.K., 2014b. Measurements of fluctuation in drag acting on rigid cylinder array in open channel flow. J. Hydraul. Eng., 140, 48–55. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000811
  59. Zhao, M.D., Fan, Z.L., 2019. Emergent vegetation flow with varying vertical porosity. J. Hydrodyn., 31, 1043–1051. https://doi.org/10.1007/s42241-018-0083-9
  60. Zhang, Y.G., Wang, P., Cheng, J.H., Wang, W.J., Zeng, L., Wang, B., 2020. Drag coefficient of emergent flexible vegetation in steady nonuniform flow. Water Resour. Res., 56. https://doi.org/10.1029/2020WR027613
DOI: https://doi.org/10.2478/johh-2024-0010 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 207 - 222
Submitted on: Nov 13, 2023
Accepted on: Mar 12, 2024
Published on: May 9, 2024
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Jiangyu Wang, Jinxin Liu, Yining Sun, Ji Li, Zhixian Cao, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.