Have a personal or library account? Click to login
Varied hydrological regime of a semi-arid coastal wetland Cover

References

  1. Agredano, R., Cienfuegos, R., Catalán, P., Mignot, E., Bonneton, P., Bonneton, N., Martínez, C., 2019. Morphological changes in a cuspate sandy beach under persistent high-energy swells: Reñaca Beach (Chile). Mar. Geol., 417, 105988. https://doi.org/10.1016/J.MARGEO.2019.105988
  2. Aguirre, C., Rutllant, J.A., Falvey, M., 2017. Wind waves climatology of the Southeast Pacific Ocean. Int. J. Climatol., 37, 4288–4301. https://doi.org/10.1002/joc.5084
  3. Alday, M., Accensi, M., Ardhuin, F., Dodet, G., 2021. A global wave parameter database for geophysical applications. Part 3: Improved forcing and spectral resolution. Ocean Model. (Oxf), 166, 101848. https://doi.org/10.1016/J.OCEMOD.2021.101848
  4. Aouf, L., 2020. Quality information document for global ocean waves analysis and forecasting product GLOBAL_ANALYSIS_FORECAST_WAV_001_027. Copernicus Marine Environment Monitoring Service, (1).
  5. Asistecsa (Ingenieros Consultores), 2017. Estudios condiciones de suelo para conservación costanera de Coquimbo, comuna de Coquimbo, Provincia de Elqui, IV Región de Coquimbo. Santiago, Chile, 34 p.
  6. Atwater, B.F., Cisternas, M.V, Bourgeois, J., Dudley, W.C., Hendley II, J.W., Stauffer, P.H., 1999. Surviving a tsunami: lessons from Chile, Hawaii, and Japan. U.S. Department of the Interior, U.S.G.S.; Circular 1187, 18 p. https://doi.org/10.3133/cir1187
  7. Beyá, J., Álvarez, M., Gallardo, A., Hidalgo, H., Winckler, P., 2017. Generation and validation of the Chilean Wave Atlas database. Ocean Model. (Oxf), 116, 16–32. https://doi.org/10.1016/J.OCEMOD.2017.06.004
  8. Bonney, R., 2021. Expanding the impact of citizen science. BioScience, 71, 5, 448–451. https://doi.org/10.1093/biosci/biab041
  9. Campos-Caba, R., 2016. Análisis de marejadas históricas y recientes en las costas de Chile. Memoria del proyecto para optar al Título de Ingeniero Civil Oceánico. Universidad de Valparaíso, Valparaíso, Chile.
  10. Carlson Mazur, M.L., Wiley, M.J., Wilcox, D.A., 2014. Estimating evapotranspiration and groundwater flow from water-table fluctuations for a general wetland scenario. Ecohydrology, 7, 378–390. https://doi.org/10.1002/eco.1356
  11. Contreras-López, M., Winckler, P., Sepúlveda, I., Andaur-Álvarez, A., Cortés-Molina, F., Guerrero, C.J., Mizobe, C.E., Igualt, F., Breuer, W., Beyá, J.F., Vergara, H., Figueroa-Sterquel, R., 2016. Field survey of the 2015 Chile tsunami with emphasis on coastal wetland and conservation areas. Pure Appl. Geophys., 173, 349–367. https://doi.org/10.1007/s00024-015-1235-2
  12. Contreras-López, M., Zuleta, C., 2019. Capítulo 7: Vulnerabilidades de los humedales costeros de Coquimbo. In: Zuleta, C., Contreras, M. (Eds.): Humedales Costeros de la Región de Coquimbo: Biodiversidad, Vulnerabilidades & Conservación. Ediciones Universidad de La Serena & Ministerio del Medio Ambiente, La Serena, Chile, pp. 183–221.
  13. Cuevas, J.G., Calvo, M., Little, C., Pino, M., Dassori, P., 2010. Are diurnal fluctuations in streamflow real? J. Hydrol. Hydromech., 58, 149–162. https://doi.org/10.2478/v10098-010-0014-0
  14. Cuevas, J.G., Arumí, J.L., Dörner, J., 2019. Assessing methods for the estimation of response times of stream discharge: The role of rainfall duration. J. Hydrol. Hydromech., 67, 143–153. https://doi.org/10.2478/johh-2018-0043
  15. Farrance, I., Frenkel, R., 2012. Uncertainty of measurement: A review of the rules for calculating uncertainty components through functional relationships. The Clinical Biochemist Reviews, 33, 49–75.
  16. Fujii, Y., Satake, K., Sakai, S., Shinohara, M., Kanazawa, T., 2011. Tsunami source of the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space, 63, 815–820. https://doi.org/10.5047/eps.2011.06.010
  17. Gallardo-Fernández, G.L., Saunders, F., 2018. Commoditization of rural lands in the semi-arid region of Chile—the case of the Huentelauquén agricultural community. Agriculture (Switzerland), 8, 26. https://doi.org/10.3390/agriculture8020026
  18. Genovese, E., Hallegatte, S., Dumas, P., 2011. Damage assessment from storm surge to coastal cities: Lessons from the Miami Area. In: Geertman, S., Reinhardt, W., Toppen, F. (Eds.): Advancing Geoinformation Science for a Changing World. Springer-Verlag, Berlin, Heidelberg, Germany, pp. 21–43. https://doi.org/10.1007/978-3-642-19789-5_2
  19. Graham, C.B., Barnard, H.R., Kavanagh, K.L., Mcnamara, J.P., 2013. Catchment scale controls the temporal connection of transpiration and diel fluctuations in streamflow. Hydrol. Process., 27, 2541–2556. https://doi.org/10.1002/hyp.9334
  20. Gribovszki, Z., Kalicz, P., Szilágyi, J., Kucsara, M., 2008. Riparian zone evapotranspiration estimation from diurnal groundwater level fluctuations. J. Hydrol., 349, 6–17. https://doi.org/10.1016/j.jhydrol.2007.10.049
  21. Haghani, S., Leroy, S.A.G., Wesselingh, F.P., Rose, N.L., 2016. Rapid evolution of coastal lagoons in response to human interference under rapid sea level change: A south Caspian Sea case study. Quatern. Int., 408, 93–112. https://doi.org/10.1016/j.quaint.2015.12.005
  22. Hicks, S.D., 2006. Understanding tides. Center for Operational Oceanographic Products and Services, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, USA, 83 p.
  23. Hidalgo-Corrotea, C., Alaniz, A.J., Vergara, P.M., Moreira-Arce, D., Carvajal, M.A., Pacheco-Cancino, P., Espinosa, A., 2023. High vulnerability of coastal wetlands in Chile at multiple scales derived from climate change, urbanization, and exotic forest plantations. Sci. Total. Environ., 903, 166130. https://doi.org/10.1016/j.scitotenv.2023.166130
  24. INGEOREC, 2011. Compañía minera Carmen de Andacollo, hidrogeología y modelo numérico de la cuenca costera del estero Culebrón. Segunda etapa. Santiago, Chile.
  25. IPCC (Intergovernmental Panel on Climate Change), 2021. Climate change 2021 – The physical science basis. In: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfeld, T., Yelekçi, O., Yu, R., Zhou, B. (Eds.): Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 p. https://doi.org/10.1017/9781009157896
  26. Lambs, L., Bompy, F., Imbert, D., Corenblit, D., Dulormne, M., 2015. Seawater and freshwater circulations through coastal forested wetlands on a Caribbean Island. Water (Switzerland), 7, 4108–4128. https://doi.org/10.3390/w7084108
  27. Larrain, S., Schaeffer, C., 2010. Conflicts over water in Chile: Between human rigths and market rules. Programa Chile Sustentable, Santiago, Chile. 58 p.
  28. Little, C., Cuevas, J.G., Lara, A., Pino, M., Schoenholtz, S., 2014. Buffer effects of streamside native forests on water provision in watersheds dominated by exotic forest plantations. Ecohydrology, 8, 1205–1217. https://doi.org/10.1002/eco.1575
  29. Liu, P.L.F., Lynett, P., Fernando, H., Jaffe, B.E., Fritz, H., Higman, B., Morton, R., Goff, J., Synolakis, C., 2005. Observations by the International Tsunami Survey Team in Sri Lanka. Science 308, 1595. https://doi.org/10.1126/science.1110730
  30. López, D., Sepúlveda, M., Vidal, G., 2016. Phragmites australis and Schoenoplectus californicus in constructed wetlands: Development and nutrient uptake. J. Soil Sci. Plant Nutr., 16, 3, 763–777.
  31. Martínez, C., Contreras-López, M., Winckler, P., Hidalgo, H., Godoy, E., Agredano, R., 2018. Coastal erosion in central Chile: A new hazard? Ocean Coast. Manag., 156, 141–155. https://doi.org/10.1016/j.ocecoaman.2017.07.011
  32. Martínez, C., Rojas, C., Rojas, O., Quezada, J., López, P., Ruíz, V., 2016. Crecimiento urbano sobre geoformas costeras de la llanura de San Pedro, Área Metropolitana de Concepción. In: Hidalgo, R., Santana, D., Arenas, F., Salazar, A., Valdebenito, C., Álvarez, L. (Eds.): En las costas del neoliberalismo: naturaleza, urbanización y producción inmobiliaria: experiencias en Chile y Argentina. 1st ed, serie GEOlibros Nº 23, Instituto de Geografía, Pontificia Universidad Católica de Chile - Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, pp. 287–312.
  33. McLaughlin, D.L., Cohen, M.J., 2011. Thermal artifacts in measurements of fine-scale water level variation. Water Resour. Res., 47, W09601. https://doi.org/10.1029/2010WR010288.
  34. Mediavilla, D., Sepúlveda, H.H., Alonso, G., 2020. Wind and wave height climate from two decades of altimeter records on the Chilean Coast (15°–56.5° S). Ocean Dynam., 70, 231–239. https://doi.org/10.1007/s10236-019-01316-9
  35. Mitsch, W.J., Gosselink, J.G., 2015. Wetlands. 5th Ed. John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 736 p.
  36. MMA (Ministerio del Medio Ambiente), 2019. Volumen 6: Vulnerabilidad en humedales. In: Ministerio del Medio Ambiente (Ed.): Determinación del riesgo de los impactos del Cambio Climático en las costas de Chile. Prepared by: Winckler, P., Contreras-López, M., Vicuña, S., Larraguibel, C., Mora, J., Esparza, C., Salcedo, J., Gelcich, S., Fariña, J. M., Martínez, C., Agredano, R., Melo, O., Bambach, N., Morales, D., Marinkovic, C., Pica, A. Santiago, Chile. https://doi.org/10.13140/RG.2.2.30575.38564
  37. Montecinos, S., Gutiérrez, J.R., López-Cortés, F., López, D., 2016. Climatic characteristics of the semi-arid Coquimbo Region in Chile. J. Arid Environ., 126, 7–11. https://doi.org/10.1016/j.jaridenv.2015.09.018
  38. Munk, W., Miller, G., Snodgrass, F., Barber, N., 2013. Erratum: Directional recording of swell from distant storms (Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (1963) 255 (505–584) https://doi.org/10.1098/rsta.1963.0011). Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. https://doi.org/10.1098/rsta.2013.0039
  39. Núñez-Farías, P., Velásquez-Contreras, S., Ríos-Carmona, V., Velásquez-Contreras, J., Velásquez-Contreras, M.E., Rojas- Rojas, J.L., Riveros-Flores, B., 2019. “Citizen Science Among All” Participatory Bird Monitoring of the Coastal Wetland of the Limarí River, Chile. Narrative Inquiry in Bioethics, 9, 1, E3–E8.
  40. Paleczek-Alcayaga, H., Pizarro-Pardo, J., Bravo-Naranjo, V., Trujillo-Acosta, A., Zuleta, C., 2019. Usos y degradación de los humedales costeros de la Región de Coquimbo. In: Zuleta, C., Contreras, M. (Eds.): Humedales Costeros de la Región de Coquimbo: Biodiversidad, Vulnerabilidades & Conservación. Ediciones Universidad de La Serena & Ministerio del Medio Ambiente, La Serena, Chile, pp. 250–277.
  41. Paulik, R., Williams, J.H., Horspool, N., Catalan, P.A., Mowll, R., Cortés, P., Woods, R., 2021. The 16 September 2015 Illapel earthquake and tsunami: Post-event tsunami inundation, building and infrastructure damage survey in Coquimbo, Chile. Pure Appl. Geophys., 178, 4837–4851. https://doi.org/10.1007/s00024-021-02734-x
  42. Pawlowicz, R., Beardsley, B., Lentz, S., 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28, 8, 929–937.
  43. Pizarro, O., Shaffer, G., Dewitte, B., Ramos, M., 2002. Dynamics of seasonal and interannual variability of the Peru-Chile Undercurrent. Geophys. Res. Lett., 29, 12, 1581.
  44. Plummer, C.C., Carlson, D.H., Hammersley, L., 2012. Physical Geology. 14th Ed. McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121, USA, 704 p.
  45. Rahmstorf, S., 2007. A semi-empirical approach to projecting future sea-level rise. Science, 315, 368–370. https://doi.org/10.1126/science.1135456
  46. Rau, G.C., Post, V.E.A., Shanafield, M., Krekeler, T., Banks, E.W., Blum, P., 2019. Error in hydraulic head and gradient time-series measurements: A quantitative appraisal. Hydrol. Earth Syst. Sc., 23, 3603–3629. https://doi.org/10.5194/hess-23-3603-2019
  47. Rojas, C., Sepúlveda-Zúñiga, E., Barbosa, O., Rojas, O., Martínez, C., 2015. Patrones de urbanización en la biodiversidad de humedales urbanos en Concepción metropolitano. Rev. Geogr. Norte Gd., 61, 181–204.
  48. Siegel, D.I., 1988. A review of the recharge-discharge function of wetlands. In: Hook, D.D., McKee, W.H., Smith, H.K., Gregory, J., Burrell, V.G., DeVoe, M.R., Sojka, R.E., Gilbert, S., Banks, R., Stolzy, L.H., Brooks, C., Matthews, T.D., Shear, T.H. (Eds.): The Ecology and Management of Wetlands, Volume 1, Ecology of Wetlands. Springer US, New York, NY, pp. 59–67. https://doi.org/10.1007/978-1-4684-8378-9_6
  49. Vousdoukas, M.I., Voukouvalas, E., Annunziato, A., Giardino, A., Feyen, L., 2016. Projections of extreme storm surge levels along Europe. Clim. Dynam., 47, 3171–3190. https://doi.org/10.1007/s00382-016-3019-5
  50. Young, I.R., 1999. Seasonal variability of the global ocean wind and wave climate. Int. J. Climatol., 19, 931–950. https://doi.org/10.1002/(SICI)1097-0088(199907)19:9<931::AID-JOC412>3
DOI: https://doi.org/10.2478/johh-2024-0007 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 238 - 251
Submitted on: Dec 4, 2023
Accepted on: Feb 28, 2024
Published on: May 9, 2024
Published by: Slovak Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Jaime G. Cuevas, María Valladares, Lucas Glasner, Etienne Bresciani, Paloma Núñez, José L. Rojas, Mercedes González, published by Slovak Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.