Have a personal or library account? Click to login

Impacts of riverbed aggradation on groundwater regime in a lowland area

Open Access
|May 2024

References

  1. AgriMetSoft, 2019. Online Calculators - Index of Agreement Calculator. https://agrimetsoft.com/calculators/Index%20of%20Agreement
  2. Antal, J., Igaz, D., 2012. Applied Agrohydrology. 7th Ed. Slovak University of Agriculture in Nitra, Nitra, 210 p. (In Slovak.)
  3. Baratelli, F., Flipo, N., Moatar, F., 2016. Estimation of streamaquifer exchanges at regional scale using a distributed model: Sensitivity to in-stream water level fluctuations, riverbed elevation and roughness. Journal of Hydrology, 542, 686–703. http://dx.doi.org/10.1016/j.jhydrol.2016.09.041
  4. Baroková, D., Červeňanská, M., Šoltész, A., 2020. Assessment of the impact of proposed cut-off walls on ground-water level regime during extreme hydrological conditions. Acta Hydrologica Slovaca, 21, 1, 113–122.
  5. Baroková, D., Šoltész, A., 2011. Drainage and infiltration resistance of rivers - Element of interaction between surface water and ground water. In: Book of abstracts of the Twelfth International Symposium Water Management and Hydraulic Engineering. Politechnika Gdaňska, Gdańsk, p. 37.
  6. Baroková, D., Šoltész, A., Červeňanská, M., Janík, A., Shenga, Z.D., 2017. Proposal of ground water level regime using numerical modelling. In: Proc. 17th Int. Multidisciplinary Scientific GeoConference SGEM 2017. Vol 17: Science and Technologies in Geology, Exploration and Mining. Albena, Bulgaria, pp. 215–222. DOI: 10.5593/sgem2017/12/S02.028
  7. Beeker Sampler Manual, 2005. Operating instructions for 04.23 Sediment core sampler, type Beeker. Eijkelkamp Agrisearch Equipment, Giesbeek, NL. https://ekotechnika.cz/sites/default/files/pdf/m10423e_beeker_sampler_manual_062015.pdf, website visited on July 26, 2023
  8. Bieger, K., Arnold, J., Rathjens, H., White, M., Bosch, D., Allen, P., Volk, M., Srinivasan, R., 2017. Introduction to SWAT+, a completely restructured version of the soil and water assessment tool. JAWRA Journal of the American Water Resources Association, 53, 115–130. https://doi.org/10.1111/1752-1688.12482
  9. Blaschke, A.P., Steiner, K.H., Schmalfuss, R., Gutknecht, D., Sengschmitt, D., 2010. Clogging processes in hyporheic interstices of an impounded river, the Danube at Vienna, Austria. Int. Rev. Hydrobiol., 88, 3–4, 397–413.
  10. Brunner, P., Therrien, R., Renard, P., Simmons, C.T., Franssen, H.J.H., 2017. Advances in understanding river–groundwater interactions. Rev. Geophys., 55, 3, 818–854.
  11. Brunner, P., Simmons, C.T., Cook, P.G., 2009. Spatial and temporal aspects of the transition from connection to disconnection between rivers, lakes and groundwater. Journal of Hydrology, 376, 1–2, 159–169.
  12. Cardenas, M.B., Wilson, J.L., Zlotnik, V.A., 2004. Impact of heterogeneity, bed forms, and stream curvature on subchannel hyporheic exchange. Water Resour. Res., 40, 8, DOI: 10.1029/2004WR003008
  13. Červeňanská, M., Baroková, D., Šoltész, A., 2021. Rye Island, 2010: Impact of the flooding on the groundwater level. Pollack Periodica, 16, 3, 70–75.
  14. Climate Atlas of Slovakia, 2015. Slovak Hydrometeorological Institute, Bratislava, 132 p.
  15. Conant, B., Robinson, C.E., Marc, J.M.J., Russell, H.A.J., 2019. A framework for conceptualizing groundwater-surface water interactions and identifying potential impacts on water quality, water quantity, and ecosystems. Journal of Hydrology, 574, 609–627. https://doi.org/10.1016/j.jhydrol.2019.04.050
  16. Crosbie, R.S., Taylor, A.R., Davis, A.C., Lamontagne S., Munday, T., 2014. Evaluation of infiltration from losing-disconnected rivers using a geophysical characterisation of the riverbed and a simplified infiltration model. Journal of Hydrology, 508,102–113.
  17. Cui, G., Su, X., Liu, Y., Zheng, S., 2021. Effect of riverbed sediment flushing and clogging on river-water infiltration rate: a case study in the Second Songhua River, Northeast China. Hydrogeol. J., 29, 551–565. https://doi.org/10.1007/s10040-020-02218-7
  18. Derx, J., Blaschke, A.P., Blöschl, G., 2010. Three-dimensional flow patterns at the river–aquifer interface - a case study at the Danube. Advances in Water Resources, 33, 1375–1387.
  19. Dulovičová, R., 2019. Transformation of bed silts along lowland channel Gabčíkovo-Topoľníky and comparison of their saturated hydraulic conductivity values. Acta Hydrologica Slovaca, 20, 2, 151–159. https://doi.org/10.31577/ahs-2019-0020.02.0018
  20. Dulovičová, R., Schügerl, R., Velísková, Y., 2022. Hydraulic conductivity of saturated bed silts in Chotárny channel, ŽO area, Slovakia. Acta Hydrologica Slovaca, 23, 2, 180–189. https://doi.org/10.31577/ahs-2022-0023.02.0020
  21. Dušek, P., Velísková, Y., 2017. Interaction between groundwater and surface water of channel network at Žitný Ostrov Area. In: Negm, A., Zeleňáková, M. (Eds.): Water Resources in Slovakia: Part I. The Handbook of Environmental Chemistry, vol 69. Springer, pp. 135–166. https://doi.org/10.1007/698_2017_177
  22. Fleckenstein, J.H., Krause, S., Hannah, D.M., Boano, F., 2010. Groundwater-surface water interactions: New methods and models to improve understanding of processes and dynamics. Advances in Water Resources, 33, 1291–1295.
  23. Frei, S., Fleckenstein, J.H., Kollet, S.J., Maxwell, R.M., 2009. Patterns and dynamics of river–aquifer exchange with variably-saturated flow using a fully-coupled model. Journal of Hydrology, 375, 3–4, 383–393.
  24. Grischek, T., Bartak, R., 2016. Riverbed clogging and sustainability of riverbank filtration. Water, 8, 12, 604.
  25. Gupta, H.V., Sorooshian, S., Yapo, P.O., 1999. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng., 4, 2, 135–143.
  26. Gutknecht, G., Blaschke, A.P., Herndl, G., Reichel, G., Schmalfuss, R., Sengschmitt, D., 1996. Clogging processes at the storage space Freudenau. Tech. report, IHEWRM, TU Wien. (In German.)
  27. Harvey, J., Gooseff, M., 2015. River corridor science: hydrologic exchange and ecological consequences from bedforms to basins. Water Resour. Res., 51, 9, 6893–6922.
  28. Jansen, H.C., Bhutta, M.N., Javed, I., Wolters, W., 2003. Groundwater modelling to assess the effect of interceptor drainage and lining. Example of model application in the Fordwah Eastern Sadiqia Project, Pakistan. In: Proc. 9th International Drainage Workshop. Utrecht, The Netherlands.
  29. Konček, M., Petrovič, Š., 1957. Klimatické oblasti Československa. Meteorologické zprávy, 10, 5, 113–119. (In Czech.)
  30. Kováčová, V., 2022. Impacts of excessive nutrients load in aquatic ecosystem. Acta Hydrologica Slovaca, 23, 1, 99–108.
  31. Kovar, K., Leijnse, A., Uffink, G.J.M., Pastoors, M.J.H., Mülschlegel, J.H.C., Zaadnoordijk, W.J., 2005. Reliability of travel times to groundwater abstraction wells: Application of the Netherlands Groundwater Model, LGM. RIVM report 703717013/2005. https://www.rivm.nl/bibliotheek/rapporten/703717013.pdf
  32. Kumar, C.P., 2015. Modelling of groundwater flow and data requirements. International Journal of Modern Sciences and Engineering Technology, 2, 2, 18–27.
  33. Lewandowski, J., Meinikmann, K., Krause, S., 2020. Groundwater- surface water interactions: recent advances and interdisciplinary challenges. Water, 12, 1, 296. https://doi.org/10.3390/w12010296
  34. Maglay, J. et al. 2009. Quaternary geological map of Slovakia - Map of Quaternary cover thickness, M 1: 500000. Slovak Geological Institute of Dionyz Stur, Bratislava.
  35. Malík, P., Bačová, N., Hronček, S., Ivanič, B., Káčer, Š., Kočický, D., Maglay, J., Marsina, K., Ondrášik, M., Šefčík, P., Černák, R., Švasta, J., Lexa, J., 2007. Zostavovanie geologických máp v mierke 1: 50 000 pre potreby integrovaného manažmentu krajiny. Manuskript. Archív odboru Geofondu ŠGÚDŠ Bratislava, 552 p. (In Slovak.)
  36. Miklós, L., Kramárik, J., Klinda, J., Lauko, V., Zaťko, M., Hrnčiarová, T., Mládek, J., Finka, M. (Eds.) 2002. Landscape Atlas of the Slovak Republic. 1st Ed. Ministry of Environment of the Slovak Republic, Bratislava; Slovak Environmental Agency, Banská Bystrica, 344 p.
  37. Moriasi, D.N., Gitau, M.W., Pai, N., Daggupati, P., 2015. Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE, 58, 6, 1763–1785. https://doi.org/10.13031/trans.58.10715
  38. Naganna, S.R., Deka, P.C., Sudheer, C., Hansen, W.F., 2017. Factors influencing streambed hydraulic conductivity and their implications on stream–aquifer interaction: a conceptual review. Environ. Sci. Pollut. Res., 24, 24765–24789, https://doi.org/10.1007/s11356-017-0393-4
  39. Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10, 3, 282–290. https://doi.org/10.1016/0022-1694(70)90255-6
  40. Okhravi, S., Alemi, M., Afzalimehr, H., Schügerl, R., Velísková, Y., 2023. Flow resistance at lowland and mountainous rivers. Journal of Hydrology and Hydromechanics, 71, 4, 464–474, https://doi.org/10.2478/johh-2023-0023
  41. Okhravi, S., Gohari, S., Alemi, M., Maia, R., 2022a. Effects of bed-material gradation on clear water scour at single and group of piles. Journal of Hydrology and Hydromechanics, 70, 1, 114–127.
  42. Okhravi, S., Schügerl, R., Velísková, Y., 2022b. Flow resistance in lowland rivers impacted by distributed aquatic vegetation. Water Resources Management, 36, 2257–2273.
  43. Peyrard, D., Sauvage, S., Vervier, P., Sanchez-Perez, J., Quintard, M., 2008. A coupled vertically integrated model to describe lateral exchanges between surface and subsurface in large alluvial floodplains with a fully penetrating river. Hydrological Processes, 22, 4257–4273.
  44. Phernambucq, I.H., 2015. The vertical hydraulic resistance of the Lek River and consequences for travel times. Internship report. https://www.oasen.nl/files/importedthe-vertical-hydraulic-resistance-lek-river-and-consequences-travel-times, website visited on September 19, 2023
  45. Report on Water Management in the Slovak Republic. Water Research Institute, Bratislava, 2005. (In Slovak.)
  46. Royal Haskoning: TRIWACO User’s manual, TRIWACO 3.x, 18 November 2004, Final Report
  47. Schügerl, R., 2019. Field study for determine Manning´s roughness coefficient with different flow conditions. Acta Hydrologica Slovaca, 20, 2, 145–150.
  48. Schügerl, R., Velísková, Y., Dulovičová, R., Sočuvka, V., 2021. Influence of submerged vegetation on the Manning´s roughness coefficient for Gabčíkovo – Topoľníky Channel. Acta Hydrologica Slovaca, 22, 1, 61–69.
  49. Shenga, Z.D., Baroková, D., Šoltész, A. 2018. Numerical modelling of groundwater extraction system to control excessive water level. Acta Hydrologica Slovaca. 19, 1, 109–116.
  50. Šurda, P., Štekauerová, V., Nagy, V. 2013. Variability of the saturated hydraulic conductivity of the individual soil types in the area of the Hron catchment, Növénytermelés, 62, Supplement, 323–326. ISSN 0546-8191
  51. Steiness, M., Jessen, S., Spitilli, M., van’t Veen, S.G.W., Højberg, A.L., Engesgaard, P., 2019. The role of management of stream–riparian zones on subsurface–surface flow components. Water, 11, 9, 1905. https://doi.org/10.3390/w11091905
  52. Švasta, J., Malík, P., 2006. Spatial distribution of mean effective precipitation over Slovakia. Podzemná voda, 12, 1, 65–77. (In Slovak.)
  53. Velstra, J., Kleinendorst, T., Niemeijer, A., Zaadnoordijk, W.J., van der Wal, B., Swierstra, W., 2014. Integrated Model Environment Water Management TRIWACO 4.0. Final Report, Royal Haskoning DHV, Amersfoort Netherlands.
  54. Willmott, C.J., 1981. On the validation of models. Physical Geography, 2, 184–194.
  55. Woessner, W.W., 2000. Stream and fluvial plain ground water interactions: Rescaling hydrogeologic thought. Ground Water, 38, 3, 423–429. https://apl.geology.sk/gibges/
  56. Zaadnoordijk, W.J., 2009. Simulating Piecewise-Linear Surface Water and Ground Water Interactions with MODFLOW. Groundwater, 47, 723–726. https://doi.org/10.1111/j.1745-6584.2009.00582.x
DOI: https://doi.org/10.2478/johh-2024-0002 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 185 - 198
Submitted on: Apr 19, 2023
Accepted on: Jan 11, 2024
Published on: May 9, 2024
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Márta Koczka Bara, Renáta Dulovičová, Yvetta Velísková, Csilla Farkas, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.