Have a personal or library account? Click to login
Testing sensitivity of BILAN and GR2M models to climate conditions in the Gambia River Basin Cover

Testing sensitivity of BILAN and GR2M models to climate conditions in the Gambia River Basin

Open Access
|Feb 2024

References

  1. Anctil, F., Perrin, C., Andréassian, V., 2004. Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models. Environ. Model. Softw., 19, 357–368.
  2. Andréassian, V., Perrin, C., Berthet, L., Le Moine, N., Lerat, J., Loumagne, C., Oudin, L., Mathevet, T., Ramos, M.-H., Valery, A., 2009. Crash tests for a standardized evaluation of hydrological models. Hydrol. Earth Syst. Sci., 13, 1757–1764.
  3. Berthet, L., Bourgin, F., Perrin, C., Viatgé, J., Marty, R., Piotte, O., 2020. A crash-testing framework for predictive uncertainty assessment when forecasting high flows in an extrapolation context. Hydrol. Earth Syst. Sci., 24, 2017–2041.
  4. Beven, K., 2018. Environmental Modelling: An Uncertain Future? CRC Press.
  5. Bodian, A., Dezetter, A., Diop, L., Deme, A., Djaman, K., Diop, A., 2018. Future climate change impacts on streamflows of two main West Africa river basins: Senegal and Gambia. Hydrology, 5, 3, 22–35.
  6. Brigode, P., Oudin, L., Perrin, C., 2013. Hydrological model parameter instability: A source of additional uncertainty in estimating the hydrological impacts of climate change? J. Hydrol., 476, 410–425.
  7. Coron, L., Andréassian, V., Perrin, C., Lerat, J., Vaze, J., Bourqui, M., Hendrickx, F., 2012. Crash testing hydrological models in contrasted climate conditions: An experiment on 216 Australian catchments. Water Resour. Res., 48, 2, W02509.
  8. Degeorges, A., Reilly, B.K., 2007. Eco-politics of dams on the Gambia river. Int. J. Water Resour. Dev., 23, 641–657.
  9. Flores, N., Rodríguez, R., Yépez, S., Osores, V., Rau, P., Rivera, D., Balocchi, F., 2021. Comparison of three daily rainfall-runoff hydrological models using four evapotranspiration models in four small forested watersheds with different land cover in South-Central Chile. Water, 13, 3191.
  10. Hanel, M., Vizina, A., MácA, P., Pavlásek, J., 2012. A multi-model assessment of climate change impact on hydrological regime in the Czech Republic. J. Hydrol. Hydromech., 60, 152–161.
  11. Kling, H., Fuchs, M., Paulin, M., 2012. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424, 264–277.
  12. Kodja, D.J., Akognongbé, A.J.S., Amoussou, E., Mahé, G., Vissin, E.W., Paturel, J.-E., Houndénou, C., 2020. Calibration of the hydrological model GR4J from potential evapotranspiration estimates by the Penman-Monteith and Oudin methods in the Ouémé watershed (West Africa). In: Proc. Hydrological Processes and Water Security in a Changing World - Hydrological Processes and Water Security in a Changing World, Beijing, China, 6–9 November 2018. Copernicus GmbH, pp. 163–169.
  13. Merz, R., Parajka, J., Blöschl, G., 2011. Time stability of catchment model parameters: Implications for climate impact analyses. Water Resour. Res., 47, W02531.
  14. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE, 50, 885–900.
  15. Mouelhi, S., Michel, C., Perrin, C., Andréassian, V., 2006. Stepwise development of a two-parameter monthly water balance model. J. Hydrol., 318, 200–214.
  16. Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models Part I – A discussion of principles. Journal of Hydrology, 10, 3, 282–290.
  17. Oudin, L., Moulin, L., Bendjoudi, H., Ribstein, P., 2010. Estimation de l’évapotranspiration potentielle sans données journalières régulières: Erreurs possibles et impact sur les simulations de bilan en eau. Hydrol. Sci. J., 55, 209–222.
  18. Refsgaard, J.C., Madsen, H., 2013. A framework for testing the ability of models to project climate change and its impacts. Clim. Change, 122, 271–282.
  19. Roudier, P., Ducharne, A., Feyen, L., 2014. Climate change impacts on runoff in West Africa: A review. Hydrology and Earth System Sciences, 18, 7, 2789–2801.
  20. Seibert, J., 2003. Reliability of model predictions outside calibration conditions. Hydrology Research, 34, 477–492.
  21. Sleziak, P., Szolgay, J., Hlavčová. K., Duethmann, D., Parajka, J., Danko, M., 2018. Factors controlling alterations in the performance of a runoff model in changing climate conditions. J. Hydrol. Hydromech., 66, 2018, 4, 381–392.
  22. Vaze, J., Post, D.A., Chiew, F.H.S., Perraud, J.M., Viney, N.R., Teng, J., 2010. Climate non-stationarity - Validity of calibrated rainfall-runoff models for use in climate change studies. J. Hydrol., 394, 447–457.
  23. Vizina, A., Horáček, S., Hanel, M., 2015. Nové možnosti modelu Bilan. Vodohospodářské Technicko-Ekonomické Informace, 57, 7–10.
  24. Vormoor, K., Heistermann, M., Bronstert, A., Lawrence, D., 2018. Hydrological model parameter (in)stability –“crash testing” the HBV model under contrasting flood seasonality conditions. Hydrol. Sci. J., 63, 991–1007.
  25. Wilby, R.L., 2005. Uncertainty in water resource model parameters used for climate change impact assessment. Hydrol. Process., 19, 3201–3219.
  26. Yapo, P.O., Gupta, H.V., Sorooshian, S., 1996. Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data. J. Hydrol., 181, 23–48.
DOI: https://doi.org/10.2478/johh-2023-0044 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 131 - 147
Submitted on: Jul 1, 2023
Accepted on: Dec 11, 2023
Published on: Feb 8, 2024
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Doudou Ba, Jakub Langhammer, Petr Maca, Ansoumana Bodian, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.