Have a personal or library account? Click to login
Heat-induced alterations in moisture-dependent repellency of water-repellent forest soils: A laboratory approach with Japanese Andosols Cover

Heat-induced alterations in moisture-dependent repellency of water-repellent forest soils: A laboratory approach with Japanese Andosols

Open Access
|Feb 2024

References

  1. Aedo, S.A., Bonilla, C.A., 2021. A numerical model for linking soil organic matter decay and wildfire severity. Ecological Modelling, 447, 109506. https://doi.org/10.1016/j.ecolmodel.2021.109506
  2. Arcenegui, V., Mataix‐Solera, J., Guerrero, C., Zornoza, R., Mayoral, A.M., Morales, J., 2007. Factors controlling the water repellency induced by fire in calcareous Mediterranean forest soils. European Journal of Soil Science, 58, 1254–1259. https://doi.org/10.1111/j.1365-2389.2007.00917.x
  3. Bernier, P.Y., Gauthier, S., Jean, P.O., Manka, F., Boulanger, Y., Beaudoin, A., Guindon, L., 2016. Mapping local effects of forest properties on fire risk across Canada. Forests, 7, 157. https://doi.org/10.3390/f7080157
  4. Bisdom, E.B.A., Dekker, L.W., Schoute, J.F.T., 1993. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma, 56, 105–118. https://doi.org/10.1016/B978-0-444-81490-6.50013-3
  5. Blake, G.R., Hartge, K.H., 1986a. Bulk density. In: Klute, A. (Ed.): Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods. Soil Science Society of America, Madison, WI, pp. 363–375. https://doi.org/10.2136/sssabookser5.1.2ed.c13
  6. Blake, G.R., Hartge, K.H., 1986b. Particle density. In: Klute, A. (Ed.): Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods. Soil Science Society of America, Madison, WI, pp. 363–375. https://doi.org/10.2136/sssabookser5.1.2ed.c14
  7. Caltabellotta, G., Iovino, M., Bagarello, V., 2022. Intensity and persistence of water repellency at different soil moisture contents and depths after a forest wildfire. J. Hydrol. Hydromech., 70, 410–420. https://doi.org/10.2478/johh-2022-0031
  8. Danielson, R.E., Sutherland, P.L., 1986. Porosity. In: Klute, A. (Ed.): Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods. Soil Science Society of America, Madison, WI, pp. 443–461.
  9. De Jonge, L.W., Jacobsen, O.H., Moldrup, P., 1999. Soil water repellency: effects of water content, temperature, and particle size. Soil Science Society of America Journal, 63, 437–442. https://doi.org/10.2136/sssaj1999.03615995006300030003x
  10. DeBano, L.F., 2000. The role of fire and soil heating on water repellency in wildland environments: a review. Journal of Hydrology, 231, 195–206. https://doi.org/10.1016/S0022-1694(00)00194-3
  11. Dekker, L.W., Ritsema, C.J., 1994. How water moves in a water-repellent sandy soil: 1. Potential and actual water repellency. Water Resources Research, 30, 2507–2517. https://doi.org/10.1029/94WR00749
  12. Dlapa, P., Simkovic Jr, I., Doerr, S.H., Simkovic, I., Kanka, R., Mataix-Solera, J., 2008. Application of thermal analysis to elucidate water‐repellency changes in heated soils. Soil Science Society of America Journal, 72, 1–10.
  13. Doerr, S.H., Blake, W.H., Shakesby, R.A., Stagnitti, F., Vuurens, S.H., Humphreys, G.S., Wallbrink, P., 2004. Heating effects on water repellency in Australian eucalypt forest soils and their value in estimating wildfire soil temperatures. International Journal of Wildland Fire, 13, 157–163. https://doi.org/10.1071/WF03051
  14. Doerr, S.H., Dekker, L. W., Ritsema, C.J., Shakesby, R.A., Bryant, R., 2002. Water repellency of soils: the influence of ambient relative humidity. Soil Science Society of America Journal, 66, 401–405.
  15. Doerr, S.H., Shakesby, R.A., Blake, W.H., Chafer, C.J., Humphreys, G.S., Wallbrink, P.J., 2006. Effects of differing wild-fire severities on soil wettability and implications for hydro-logical response. Journal of Hydrology, 319, 295–311. https://doi.org/10.1016/j.jhydrol.2005.06.038
  16. Doerr, S.H., Shakesby, R.A., Walsh, R., 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews, 51, 33–65. https://doi.org/10.1016/S0012-8252(00)00011-8
  17. Doerr, S.H., Thomas, A.D., 2000. The role of soil moisture in controlling water repellency: new evidence from forest soils in Portugal. Journal of Hydrology, 231, 134–147. https://doi.org/10.1016/S0022-1694(00)00190-6
  18. Faé, G.S., Montes, F., Bazilevskaya, E., Añó, R.M., Kemanian, A.R., 2019. Making soil particle size analysis by laser diffraction compatible with standard soil texture determination methods. Soil Science Society of America Journal, 8, 1244–1252.
  19. García-Corona, R., Benito, E., De Blas, E., Varela, M.E., 2004. Effects of heating on some soil physical properties related to its hydrological behaviour in two north-western Spanish soils. International Journal of Wildland Fire, 13, 195–199. https://doi.org/10.1071/WF03068
  20. Goebel, M.O., Bachmann, J., Woche, S.K., Fischer, W.R., Horton, R., 2004. Water potential and aggregate size effects on contact angle and surface energy. Soil Science Society of America Journal, 68, 383–393. https://doi.org/10.2136/sssaj2004.3830
  21. Hubbert, K.R., Wohlgemuth, P.M., Beyers, J.L., Narog, M.G., Gerrard, R., 2012. Post-fire soil water repellency, hydrologic response, and sediment yield compared between grass-converted and chaparral watersheds. Fire Ecology, 8, 143–162. https://doi.org/10.4996/fireecology.0802143
  22. Iovino, M., Pekárová, P., Hallett, P.D., Pekár, J., Lichner, Ľ., Mataix-Solera, J., Alagna, V., Walsh, R., Raffan, A., Schacht, K., Rodný, M., 2018. Extent and persistence of soil water repellency induced by pines in different geographic regions. Journal of Hydrology and Hydromechanics, 66, 360–368. https://doi.org/10.2478/johh-2018-0024
  23. Jordán, A., Zavala, L.M., Mataix-Solera, J., Doerr, S.H., 2013. Soil water repellency: Origin, assessment and geomorphological consequences. Catena, 108, 1–5. https://doi.org/10.1016/j.catena.2013.05.005
  24. Kajiura, M., Etori, Y., Tange, T., 2011. Water condition control of in situ soil water repellency: an observational study from a hillslope in a Japanese humid‐temperate forest. Hydrological Processes, 26, 3070–3078. https://doi.org/10.1002/hyp.8310
  25. Kajiura, M., Tokida, T., Seki, K., 2012. Effects of moisture conditions on potential soil water repellency in a tropical forest regenerated after fire. Geoderma, 181, 30–35. https://doi.org/10.1016/j.geoderma.2012.02.028
  26. Kawamoto, K., Moldrup, P., Komatsu, T., de Jonge, L.W., Oda, M., 2007. Water repellency of aggregate size fractions of a volcanic ash soil. Soil Science Society of America Journal, 71, 1658–1666. https://doi.org/10.2136/sssaj2006.0284
  27. Kobayashi, M., Shimizu, T., 2007. Soil water repellency in a Japanese cypress plantation restricts increases in soil water storage during rainfall events. Hydrological Processes, 21, 2356–2364. https://doi.org/10.1002/hyp.6754
  28. Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263.
  29. Leelamanie, D.A.L., 2016. Occurrence and distribution of water repellency in size fractionated coastal dune sand in Sri Lanka under Casuarina shelterbelt. Catena, 142, 206–212. https://doi.org/10.1016/j.catena.2016.03.026
  30. Leelamanie, D.A.L., Karube, J., 2007. Effects of organic compounds, water content, and clay on water repellency of a model sandy soil. Soil Sci. Plant Nutr., 53, 711–719. https://doi.org/10.1111/j.1747-0765.2007.00199.x
  31. Leelamanie, D.A.L., Karube, J., Yoshida, A., 2008. Characterizing water repellency indices: Contact angle and water drop-penetration time of hydrophobized sand. Soil Science & Plant Nutrition, 54, 2, 179–187. https://doi.org/10.1111/j.1747-0765.2007.00232.x
  32. Leelamanie, D.A.L., Karube, J., 2011. Water-dependent repellency of model soils as affected by clay. Soil Science and Plant Nutrition, 57, 7–10. https://doi.org/10.1080/00380768.2011.551836
  33. Leelamanie, D.A.L., Nishiwaki, J., 2019. Water repellency in Japanese coniferous forest soils as affected by drying temperature and moisture. Biologia, 74, 127–137. https://doi.org/10.2478/s11756-018-0157-8
  34. Leelamanie, D.A.L., Piyaruwan, H.I.G.S., Jayasinghe, P.K.S.C., Senevirathne, P.A.N.R., 2021. Hydrophysical characteristics in water-repellent tropical Eucalyptus, Pine, and Casuarina plantation forest soils. J. Hydrol. Hydromech., 69, 447–455. https://doi.org/10.2478/johh-2021-0027
  35. Lichner, Ľ., Capuliak, J., Zhukova, N., Holko, L., Czachor, H., Kollár, J., 2013. Pines influence hydrophysical parameters and water flow in a sandy soil. Biologia, 68, 1104–1108. https://doi.org/10.2478/s11756-013-0254-7
  36. Lin, C.Y., Chou, W.C., Tsai, J.S., Lin, W.T., 2006. Water repellency of Casuarina windbreaks (Casuarina equisetifolia Forst.) caused by fungi in central Taiwan. Ecological Engineering, 26, 283–292. https://doi.org/10.1016/j.ecoleng.2005.10.010
  37. MacDonald, L.H., Huffman, E.L., 2004. Post‐fire soil water repellency: persistence and soil moisture thresholds. Soil Science Society of America Journal, 68, 1729–1734. https://doi.org/10.2136/sssaj2004.1729
  38. Martins, M.A., Machado, A.I., Serpa, D., Prats, S.A., Faria, S.R., Varela, M.E., González-Pelayo, Ó., Keizer, J.J., 2013. Runoff and inter-rill erosion in a Maritime Pine and a eucalypt plantation following wildfire and terracing in north-central Portugal. J. Hydrol. Hydromech., 61, 4, 261–268. https://doi.org/10.2478/johh-2013-0033
  39. Ma’shum, M., Farmer, V.C., 1985. Origin and assessment of water repellency of a sandy South Australian soil. Australian Journal of Soil Research, 23, 623–626. https://doi.org/10.1071/SR9850623
  40. Miyata, S., Kosugi, K.I., Gomi, T., Onda, Y., Mizuyama, T., 2007. Surface runoff as affected by soil water repellency in a Japanese cypress forest. Hydrological Processes, 21, 2365–2376. https://doi.org/10.1002/hyp.6749
  41. Negri, S., Stanchi, S., Celi, L., Bonifacio, E., 2021. Simulating wildfires with lab-heating experiments: Drivers and mechanisms of water repellency in alpine soils. Geoderma, 402, 115357. https://doi.org/10.1016/j.geoderma.2021.115357
  42. Perera, H.T.M., Leelamanie, D.A.L., Maeda, M., Mori, Y., 2023. Alterations in aggregate characteristics of thermally heated water-repellent soil aggregates under laboratory conditions. J. Hydrol. Hydromech., 71, 2, 177–187. https://doi.org/10.2478/johh-2023-0009
  43. Piyaruwan, H.I.G.S., Lelamanie, D.A.L., 2020. Existence of water repellency and its relation to structural stability of soils in a tropical Eucalyptus plantation forest. Geoderma, 380, 114679. https://doi.org/10.1016/j.geoderma.2020.114679
  44. Regalado, C.M., Ritter, A., 2005. Characterizing water dependent soil repellency with minimal parameter requirement. Soil Sci. Soc. Am. J., 69, 1955–1966. https://doi.org/10.2136/sssaj2005.0060
  45. Reynolds, S.G., 1970. The gravimetric method of soil moisture determination. Part III. An examination of factors influencing soil moisture variability. J. Hydrol., 11, 288–300.
  46. Schulte, E.E., Hopkins, B.G., 1996. Estimation of soil organic matter by weight loss‐on‐ignition. Soil organic matter: Analysis and interpretation, 46, 21–31.
  47. Simkovic, I., Dlapa, P., Doerr, S.H., Mataix-Solera, J., Sasinkova, V., 2008. Thermal destruction of soil water repellency and associated changes to soil organic matter as observed by FTIR spectroscopy. Catena, 74, 205–211.
  48. Smith, J.L., Doran, J.W., 1997. Measurement and use of pH and electrical conductivity for soil quality analysis. In: Doran, J.W., Jones, A.J. (Eds.): Methods for Assessing Soil Quality, 49, 169–185.
  49. Walden, L.L., Harper, R.J., Mendham, D.S., Henry, D.J., Fontaine, J.B., 2015. Eucalyptus reforestation induces soil water repellency. Soil Research, 53, 168–177. https://doi.org/10.1071/SR13339
  50. Wallis, M.G., Horne, D.J., 1992. Soil water repellency. Adv. Soil Sci., 20, 91–146.
  51. Wallis, M.G., Horne, D.J., McAuliffe, K.W., 1990. A study of water repellency and its amelioration in a yellow-brown sand: 1. Severity of water repellency and the effects of wetting and abrasion. New Zealand Journal of Agricultural Research, 33,139–144. https://doi.org/10.1080/00288233.1990.10430670
  52. Zavala, L.M., Granged, A.J., Jordán, A., Bárcenas-Moreno, G., 2010. Effect of burning temperature on water repellency and aggregate stability in forest soils under laboratory conditions. Geoderma, 158, 366–374. https://doi.org/10.1016/j.geoderma.2010.06.004
DOI: https://doi.org/10.2478/johh-2023-0035 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 25 - 33
Submitted on: May 2, 2023
Accepted on: Aug 1, 2023
Published on: Feb 8, 2024
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 H.T.M. Perera, Yasushi Mori, Morihiro Maeda, D.A.L. Leelamanie, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.