Have a personal or library account? Click to login
Using feature engineering and machine learning in FAO reference evapotranspiration estimation Cover

Using feature engineering and machine learning in FAO reference evapotranspiration estimation

Open Access
|Nov 2023

References

  1. Ahani, A., Mousavi Nadoushani, S.S., 2021. FAO56: Evapotranspiration Based on FAO Penman-Monteith Equation: R package version 0.1.0 [WWW Document]. URL https://CRAN.R-project.org/package=FAO56 (accessed 6.7.2023).
  2. Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration – Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. FAO, Rome 300, D05109.
  3. Blaney, H.F., Criddle, W.D., 1950. Determining water requirements in irrigated areas from climatological and irrigation data. United States Department of Agriculture, Soil Conservation Service, Washington 25, DC, 48 p.
  4. Breiman, L., 2001. Random forests. Machine Learning, 45, 5–32.
  5. Dimitriadou, S., Nikolakopoulos, K.G., 2022. Multiple linear regression models with limited data for the prediction of reference evapotranspiration of the Peloponnese, Greece. Hydrology, 9, 7, 124. https://doi.org/10.3390/hydrology9070124
  6. Doorenbos, J., Pruitt, W.O., 1977. Crop water requirements. FAO Irrigation and Drainage Paper 24. Land and Water Development Division, FAO, Rome, 144 p.
  7. Dorogush, A.V., Ershov, V., Gulin, A., 2018. CatBoost: gradient boosting with categorical features support. ArXiv preprint arXiv. https://doi.org/https://doi.org/10.48550/arXiv.1810.11363
  8. European Commission, Joint Research Centre. Agri4Cast dataset [WWW Document]. URL https://agri4cast.jrc.ec.europa.eu/dataportal/ (accessed 6.7.2023).
  9. Friedman, J., Hastie, T., Tibshirani, R., Narasimhan, B., Tay, K., Simon, N., 2009. Glmnet: Lasso and elastic-net regularized generalized linear models: R package version 1, 24 p.
  10. Gomes, E.P., Blanco, C.J.C., 2021. Daily rainfall estimates considering seasonality from a MODWT-ANN hybrid model. Journal of Hydrology and Hydromechanics, 69, 13–28. https://doi.org/10.2478/johh-2020-0043
  11. Guo, D., Westra, S., Maier, H.R., 2016. An R package for modelling actual, potential and reference evapotranspiration. Environmental Modelling & Software, 78, 216–224. https://doi.org/10.1016/j.envsoft.2015.12.019
  12. Hargreaves, G.H., Samani, Z.A., 1985. Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture 1, 96–99. https://doi.org/10.13031/2013.26773
  13. Huang, G., Wu, L., Ma, X., Zhang, W., Fan, J., Yu, X., Zeng, W., Zhou, H., 2019. Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions. Journal of Hydrology, 574, 1029–1041. https://doi.org/10.1016/j.jhydrol.2019.04.085
  14. H2O.ai, 2022. H2O Documentation: H2O for R Users [WWW Document]. URL https://docs.h2o.ai/h2o/latest-stable/h2odocs/index.html#h2o-package-for-r (accessed 6.7.2023).
  15. Chen, X., Parajka, J., Széles, B., Strauss, P., Blöschl, G., 2020. Controls on event runoff coefficients and recession coefficients for different runoff generation mechanisms identified by three regression methods. Journal of Hydrology and Hydromechanics, 68, 155–169. https://doi.org/10.2478/johh-2020-0008
  16. Karatzoglou, A., Smola, A., Hornik, K., Zeileis, A., 2004. Kernlab - An S4 Package for Kernel Methods in R. Journal of Statistical Software, 11, 9, 1–20. https://doi.org/10.18637/jss.v011.i09
  17. Klein Tank, A.M.G., Wijngaard, J.B., Können, G.P., Böhm, R., Demarée, G., Gocheva, A., Mileta, M., Pashiardis, S., Hejkrlik, L., Kern-Hansen, C., Heino, R., Bessemoulin, P., Müller-Westermeier, G., Tzanakou, M., Szalai, S., Pálsdóttir, T., Fitzgerald, D., Rubin, S., Capaldo, M., Maugeri, M., Leitass, A., Bukantis, A., Aberfeld, R., van Engelen, A.F.V., Forland, E., Mietus, M., Coelho, F., Mares, C., Razuvaev, V., Nieplova, E., Cegnar, T., Antonio López, J., Dahlström, B., Moberg, A., Kirchhofer, W., Ceylan, A., Pachaliuk, O., Alexander, L.V., Petrovic, P., 2002. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. International Journal of Climatology, 22, 1441–1453. https://doi.org/10.1002/joc.773
  18. Krishnashetty, P.H., Balasangameshwara, J., Sreeman, S., Desai, S., Kantharaju, A.B., 2021. Cognitive computing models for estimation of reference evapotranspiration: A review. Cognitive Systems Research, 70, 109–116. https://doi.org/10.1016/j.cogsys.2021.07.012
  19. Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engel-hardt, A., Cooper, T., Mayer, Z., Kenkel, B., 2020. Caret: Classification and Regression Training. R package version 6.0-86.
  20. Liaw, A., Wiener, M., 2015. RandomForest: Breiman and Cutler’s random forests for classification and regression. R package version 4, 14.
  21. Madni, H.A., Umer, M., Ishaq, A., Abuzinadah, N., Saidani, O., Alsubai, S., Hamdi, M., Ashraf, I., 2023. Water-quality prediction based on H2O AutoML and explainable AI techniques. Water, 15, 3, 475. https://doi.org/10.3390/w15030475
  22. Makkink, G.F., 1957. Testing the Penman formula by means of lysimeters. Journal of the Institution of Water Engineers, 11, 277–288.
  23. McGuinness, J.L., Bordne, E.F., 1972. A comparison of lysimeter-derived potential evapotranspiration with computed values. US Department of Agriculture.
  24. Mehta, R., Pandey, V., 2015. Reference evapotranspiration (ETo) and crop water requirement (ETc) of wheat and maize in Gujarat. Journal of Agrometeorology, 17, 107–113. https://doi.org/10.54386/jam.v17i1.984
  25. Mohammadi, B., Mehdizadeh, S., 2020. Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm. Agricultural Water Management, 237, 106145. https://doi.org/10.1016/j.agwat.2020.106145
  26. Montgomery, D.C., Runger, G.C., 2018. Applied Statistics and Probability for Engineers. 7th Ed. John Wiley.
  27. Mostafa, R.R., Kisi, O., Adnan, R.M., Sadeghifar, T., Kuriqi, A., 2023. Modeling potential evapotranspiration by improved machine learning methods using limited climatic data. Water, 15, 3, 486. https://doi.org/10.3390/w15030486
  28. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A., 2018. CatBoost: unbiased boosting with categorical features: unbiased boosting with categorical features. Advances in Neural Information Processing Systems 31.
  29. R Developement Core Team, 2009. A language and environment for statistical computing. http://www.R-project.org.
  30. Roy, D.K., Sarkar, T.K., Kamar, S.S.A., Goswami, T., Muktadir, M.A., Al-Ghobari, H.M., Alataway, A., Dewidar, A.Z., El-Shafei, A.A., Mattar, M.A., 2022. Daily prediction and multi-step forward forecasting of reference evapotranspiration using LSTM and Bi-LSTM models. Agronomy, 12, 3, 594. https://doi.org/10.3390/agronomy12030594
  31. Sattari, M.T., Apaydin, H., Shamshirband, S., 2020. Performance evaluation of deep learning-based Gated Recurrent Units (GRUs) and tree-based models for estimating ETo by using limited meteorological variables. Mathematics, 8, 972. https://doi.org/10.3390/math8060972
  32. Seifi, A., Riahi, H., 2020. Estimating daily reference evapotranspiration using hybrid gamma test-least square support vector machine, gamma test-ANN, and gamma test-ANFIS models in an arid area of Iran. Journal of Water and Climate Change, 11, 217–240. https://doi.org/10.2166/wcc.2018.003
  33. Silva-Júnior, R.O., Souza-Filho, P.W.M., Salomão, G.N., Tavares, A.L., Santos, J.F., Santos, D.C., Dias, L.C., Silva, M.S., Melo, A.M.Q., Souza-Costa, C.E.A., Rocha, E.J.P., 2021. Response of water balance components to changes in soil use and vegetation cover over three decades in the Eastern Amazon. Frontiers in Water, 3, 749507. https://doi.org/10.3389/frwa.2021.749507
  34. Szalai, S., Nejedlik, P., Štastny, P., Mikulová, K., Szentimrey, T., Bihari, Z., Lakatos, M., 2012. Climate of the Carpathian Region, a project for a high resolution harmonized gridded database. Forum Carpaticum 2012.
  35. Valle Júnior, L.C.G. do, Vourlitis, G.L., Curado, L.F.A., Palácios, R. da S., Nogueira, J. de S., Lobo, F. de A., Islam, A.R.M.T., Rodrigues, T.R., 2021. Evaluation of FAO-56 procedures for estimating reference evapotranspiration using missing climatic data for a Brazilian tropical savanna. Water, 13, 1763. https://doi.org/10.3390/w13131763
  36. Wang, S., Lian, J., Peng, Y., Hu, B., Chen, H., 2019. Generalized reference evapotranspiration models with limited climatic data based on random forest and gene expression programming in Guangxi, China. Agricultural Water Management, 221, 220–230. https://doi.org/10.1016/j.agwat.2019.03.027
  37. Wright, M.N., Ziegler, A., 2017. Ranger: A fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software, 77, 1, 1–17. https://doi.org/10.18637/jss.v077.i01
  38. Yeh, H.-F., 2017. Comparison of evapotranspiration methods under limited data. In: Bucur, D. (Ed.): Current Perspective to Predict Actual Evapotranspiration. Intech Open. https://doi.org/10.5772/intechopen.68495
  39. Zambrano-Bigiarini, M., 2022. HydroGOF: Goodness-of-fit functions for comparison of simulated and observed hydrological time series 1–77. https://doi.org/10.5281/zenodo.839854
  40. CarpatClim, Deliverable D1.6 [WWW Document]. URL http://www.carpatclim-eu.org/docs/deliverables/D1_6.pdf (accessed 6.7.2023).
DOI: https://doi.org/10.2478/johh-2023-0032 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 425 - 438
Submitted on: Jul 1, 2023
Accepted on: Oct 4, 2023
Published on: Nov 14, 2023
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Barbora Považanová, Milan Čistý, Zbyněk Bajtek, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.