References
- Alifanov, O.M., Artyukhin, E.A., 1975. Regularized numerical solution of nonlinear inverse heat-conduction problem. Journal of Engineering Physics, 29, 1, 934–938. https://doi.org/10.1007/BF00860643/METRICS
- Almikaeel, W., Čubanová, L., Šoltész, A., 2022. Hydrological drought forecasting using machine learning – Gidra River case study. Water, 14, 3, 387. https://doi.org/10.3390/W14030387
- Andrle, M., El Badia, A., 2012. Identification of multiple moving pollution sources in surface waters or atmospheric media with boundary observations. Inverse Problems, 28, 7. https://doi.org/10.1088/0266-5611/28/7/075009
- Arifjanov, A., Samiev, L.N., Abdulkhaev, Z., Abduraimova, D., Yusupov, S., Kaletová, T., 2022. Model of urban groundwater level management in drainage systems. Acta Hydrologica Slovaca, 23, 2, 172–179. https://doi.org/10.31577/ahs-2022-0023.02.0019
- Bagtzoglou, A.C., Atmadja, J., 2003. Marching-jury backward beam equation and quasi-reversibility methods for hydrologic inversion: Application to contaminant plume spatial distribution recovery. Water Resources Research, 39, 2, 1–14. https://doi.org/10.1029/2001WR001021
- Banik, B.K., Di Cristo, C., Leopardi, A., 2014. SWMM5 Toolkit Development for Pollution Source Identification in Sewer Systems. Procedia Engineering, 89, 750–757. https://doi.org/10.1016/j.proeng.2014.11.503
- Banik, B.K., Alfonso, L., Torres, A.S., Mynett, A., Di Cristo, C., Leopardi, A., 2015a. Optimal placement of water quality monitoring stations in sewer systems: An information theory approach. Procedia Engineering, 119, 1, 1308–1317. https://doi.org/10.1016/j.proeng.2015.08.956
- Banik, B.K., Di Cristo, C., Leopardi, A., 2015b. A pre-screening procedure for pollution source identification in sewer systems. Procedia Engineering, 119, 1, 360–369. https://doi.org/10.1016/j.proeng.2015.08.896
- Banik, B.K., Alfonso, L., Di Cristo, C., Leopardi, A., 2017. Greedy algorithms for sensor location in sewer systems. Water, 9, 11, 856. https://doi.org/10.3390/w9110856
- Beck, J.V., Wolf, H., 1965. Nonlinear inverse heat conduction problem. In: Proc. ASME/AIChE Heat Transfer Conference and Exhibit, ASME Paper 65-HT-40, Los Angeles.
- Beck, J.V., Blackwell, B., Clair Jr, C.R.S., 1985. Inverse Heat Conduction: Ill-Posed Problems. John Wiley & Sons. Bencala, K.E., Walters, R.A., 1983. Simulation of solute transport in a mountain pool‐and‐riffle stream: A transient storage model. Water Resources Research, 19, 3, 718–724. https://doi.org/10.1029/WR019i003p00718
- Brunner, G.W., Bonner, V.R., 1994. HEC River Analysis System (HEC-RAS). Hydrologic Engineering Center. https://erdc-library.erdc.dren.mil/jspui/handle/11681/32541
- Buras, M.P., Solano Donado, F., 2021. Identifying and estimating the location of sources of industrial pollution in the sewage network. Sensors, 21, 10, 3426. https://doi.org/10.3390/s21103426
- Busby, H.R., Trujillo, D.M., 1985. Numerical solution to a two-dimensional inverse heat conduction problem. International Journal for Numerical Methods in Engineering, 21, 2, 349–359. https://doi.org/10.1002/NME.1620210211
- Butera, I., Tanda, M.G., Zanini, A., 2013. Simultaneous identification of the pollutant release history and the source location in groundwater by means of a geostatistical approach. Stochastic Environmental Research and Risk Assessment, 27, 5, 1269–1280. https://doi.org/10.1007/S00477-012-0662-1
- Cannon, J.R., 1968. Determination of an unknown heat source from overspecified boundary data. SIAM Journal on Numerical Analysis, 5, 2, 275–286.
- Capel, P.D., Giger, W., Reichert, P., Wanner, O., 1988. Accidental input of pesticides into the Rhine River. Environmental Science & Technology, 22, 9, 992–997.
- Chachuła, K., Słojewski, T.M., Nowak, R., 2022. Multisensor data fusion for localization of pollution sources in wastewater networks. Sensors, 22, 1, 387.
- Cheng, W.P., Jia, Y., 2010. Identification of contaminant point source in surface waters based on backward location probability density function method. Advances in Water Resources, 33, 4, 397–410. https://doi.org/10.1016/j.advwatres.2010.01.004
- Cooper, W.J., 2014. Responding to crisis: The West Virginia chemical spill. Environ. Sci. Technol., 48, 6, 3095.
- Čubanová, L., Dušička, P., Orfánus, M., Rumann, J., 2022. Redesign of an intake fish pass structure. Slovak Journal of Civil Engineering, 30, 4, 49–54. https://doi.org/10.2478/sjce-2022-0028
- DHI, 2012. MIKE 3 FLOW MODEL – Hydrodynamic Module. DHI Group, Hørsholm, Denmark, 98 p.
- Dodangeh, E., Afzalimehr, H., 2022. Incipient motion of sediment particles in the presence of bed forms under decelerating and accelerating flows. J. Hydrol. Hydromech., 70, 89–102. https://doi.org/10.2478/johh-2022-0002
- Duan, W., He, B., Takara, K., Luo, P., Nover, D., Sahu, N., Yamashiki, Y., 2013. Spatiotemporal evaluation of water quality incidents in Japan between 1996 and 2007. Chemosphere, 93, 6, 946–953.
- Dura, G., Kambourova, V., Simeonova, F. (Eds.), 2007. Management of Intentional and Accidental Water Pollution. Springer, Dordrecht.
- El Badia, A., Hamdi, A., 2007. Inverse source problem in an advection-dispersion-reaction system: Application to water pollution. Inverse Problems, 23, 5, 2103–2120. https://doi.org/10.1088/0266-5611/23/5/017
- Elder, J.W., 1959. The dispersion of marked fluid in turbulent shear flow. Journal of Fluid Mechanics, 5, 4, 544–560. https://doi.org/10.1017/S0022112059000374
- Emke, E., Vughs, D., Kolkman, A., de Voogt, P., 2018. Wastewater-based epidemiology generated forensic information: Amphetamine synthesis waste and its impact on a small sewage treatment plant. Forensic Science International, 286, e1–e7.
- Essouayed, E., Verardo, E., Pryet, A., Chassagne, R.L., Atteia, O., 2020. An iterative strategy for contaminant source localisation using GLMA optimization and Data Worth on two synthetic 2D Aquifers. Journal of Contaminant Hydrology, 228, 103554. https://doi.org/10.1016/J.JCONHYD.2019.103554
- Fischer, H.B., List, E.J., Koh, R.C.Y., Imberger, J., Brooks, N.H., 1979. Mixing in Inland and Coastal Waters. Academic Press.
- Ghane, A., Mazaheri, M., Samani, J.M.V., 2016. Location and release time identification of pollution point source in river networks based on the Backward Probability Method. Journal of Environmental Management, 180, 164–171. https://doi.org/10.1016/j.jenvman.2016.05.015
- Hamdi, A., 2016. Detection-Identification of multiple unknown time-dependent point sources in a 2D transport equation: application to accidental pollution. Inverse Problems in Science and Engineering, 25, 10, 1423–1447. https://doi.org/10.1080/17415977.2016.1265957
- Hart, J., Sonnenwald, F., Stovin, V., Guymer, I., 2021. Longitudinal dispersion in unsteady pipe flows. Journal of Hydraulic Engineering, 147, 9. https://doi.org/10.1061/(asce)hy.1943-7900.0001918
- Hauser, F.M., Metzner, T., Rößler, T., Pütz, M., Krause, S., 2019. Real-time wastewater monitoring as tool to detect clandestine waste discharges into the sewage system. Environmental Forensics, 20, 1, 13–25.
- Hečková, P., Bareš, V., Stránský, D., Sněhota, M., 2022. Performance of experimental bioretention cells during the first year of operation. J. Hydrol. Hydromech., 70, 42–61. https://doi.org/10.2478/johh-2021-0038
- Ji, L., Liu, J., Li, Z.W., Pan, B.Z., Sun, M., 2017. Accidents of water pollution in China in 2011-2015 and their causes. Journal of Ecology and Rural Environment, 33, 9, 775–782.
- Jin, G., Zhang, Z., Yang, Y., Hu, S., Tang, H., Barry, D.A., Li, L., 2020. Mitigation of impact of a major benzene spill into a river through flow control and in-situ activated carbon absorption. Water Research, 172, 115489.
- Julínek, T., Říha, J., 2017. Longitudinal dispersion in an open channel determined from a tracer study. Environmental Earth Sciences, 76, 17. https://doi.org/10.1007/s12665-017-6913-1
- Kessler, A., Ostfeld, A., Sinai, G., 1998. Detecting accidental contaminations in municipal water networks. Journal of Water Resources Planning and Management, 124, 4, 192–198. https://doi.org/10.1061/(ASCE)0733-9496(1998)124:4(192)
- Kováčová, V., 2021. Estimation of nitrate dispersion-diffusion coefficients in agricultural soil profile. Acta Hydrologica Slovaca, 22, 1, 125–131. https://doi.org/10.31577/ahs-2021-0022.01.0015
- Kováčová, V., 2023. Deterioration of water quality in aquatic system. Acta Hydrologica Slovaca, 24, 1, 141–150. https://doi.org/10.31577/ahs-2023-0024.01.0016
- Krenkel, P.A., Orlob, G., 1962. Turbulent diffusion and reaeration coefficient. J. Sanitary Engineering Div., ASCE, 88, SA2, 53–83.
- Lee, Y.J., Park, C., Lee, M.L., 2018. Identification of a contaminant source location in a river system using random forest models. Water, 10, 4, 391. https://doi.org/10.3390/W10040391
- Mahar, P.S., Datta, B., 2000. Identification of pollution sources in transient groundwatersystems. Water Resources Management, 14, 3, 209–227. https://doi.org/10.1023/A:1026527901213
- Malakar, P., Das, R., 2021. Relative role of sediment entrainments on log-law parameters of longitudinal velocity distributions in mobile bed flows. J. Hydrol. Hydromech., 69, 243–254. https://doi.org/10.2478/johh-2021-0017
- Manina, M., Halaj, P., Jurík, L., Kaletová, T., 2020. Modelling seasonal changes of longitudinal dispersion in the Okna river. Acta Scientiarum Polonorum Formatio Circumiectus, 19, 1, 37–46. https://doi.org/10.15576/asp.fc/2020.19.1.37
- Mazaheri, M., Mohammad Vali Samani, J., Samani, H.M.V., 2015. Mathematical model for pollution source identification in rivers. Environmental Forensics, 16, 4, 310–321. https://doi.org/10.1080/15275922.2015.1059391
- Moghaddam, M.B., Mazaheri, M., Samani, J.M.V., 2021. Inverse modeling of contaminant transport for pollution source identification in surface and groundwaters: a review. Groundwater for Sustainable Development, 15, 100651. https://doi.org/10.1016/J.GSD.2021.100651
- Moghaddam, M.B., Mazaheri, M., Samani, J.M.V., Boano, F., 2022. An innovative framework for real-time monitoring of pollutant point sources in river networks. Stochastic Environmental Research and Risk Assessment, 36, 7, 1791–1818. https://doi.org/10.1007/S00477-022-02233-Y
- Olías, M., Cánovas, C.R., Basallote, M.D., Macías, F., Pérez-López, R., González, R.M., Millán-Becerro, R., Nieto, J.M., 2019. Causes and impacts of a mine water spill from an acidic pit lake (Iberian Pyrite Belt). Environmental Pollution, 250, 127–136.
- Pérez Guerrero, J.S., Skaggs, T.H., 2010. Analytical solution for one-dimensional advection–dispersion transport equation with distance-dependent coefficients. J. Hydrol., 390, 1–2, 57–65. https://doi.org/10.1016/j.jhydrol.2010.06.030
- Richardson, K., Carling, P.A., 2006. The hydraulics of a straight bedrock channel: Insights from solute dispersion studies. Geomorphology, 82, 1–2, 98–125. https://doi.org/10.1016/J.GEOMORPH.2005.09.022
- Rieckermann, J., Neumann, M., Ort, C., Huisman, J.L., Gujer, W., 2005. Dispersion coefficients of sewers from tracer experiments. Water Science and Technology, 52, 5. https://doi.org/10.2166/wst.2005.0124
- Rocher Morant, J., 2023. Study and Design of a Sensor System for the Detection of Illicit Discharges in Sewers and Water Bodies. Universitat Politècnica de València.
- Rossman, L.A., 2000. Epanet 2 Users Manual. US Environmental Protection Agency, Water Supply and Water Resources Division, National Risk Management Research Laboratory, Cincinnati, OH, 45268.
- Rossman, L.A., 2004. Storm Water Management Model User’s Manual Version 5.0. Environmental Protection Agency, Washington, DC.
- Runkel, R.L., 1996. Solution of the advection-dispersion equation: Continuous load of finite duration. Journal of Environmental Engineering, 122, 9, 830–832. https://doi.org/10.1061/(ASCE)0733-9372(1996)122:9(830)
- Runkel, R.L., Broshears, R.E., 1991. One-dimensional transport with inflow and storage (OTIS): A solute transport model for small streams. CADSWES-Center for Advanced Decision Support for Water and Environmental Systems, Department of Civil Engineering, University of Colorado. 91 p.
- Salehin, M., Packman, A.I., Wörman, A., 2003. Comparison of transient storage in vegetated and unvegetated reaches of a small agricultural stream in Sweden: Seasonal variation and anthropogenic manipulation. Advances in Water Resources, 26, 9, 951–964. https://doi.org/10.1016/S0309-1708(03)00084-8
- Skaggs, T.H., Kabala, Z.J., 1994. Recovering the release history of a groundwater contaminant. Water Resources Research, 30, 1, 71–79. https://doi.org/10.1029/93WR02656
- Sleziak, P., Jančo, M., Danko, M., Méri, L., Holko, L., 2023. Accuracy of radar-estimated precipitation in a mountain catchment in Slovakia. J. Hydrol. Hydromech., 71, 111–122. https://doi.org/10.2478/johh-2022-0037
- Sokáč, M., Velísková, Y., 2022. Dispersion process in conditions of real sewer systems - in situ experiments. Acta Hydrologica Slovaca, 23, 2, 288–295. https://doi.org/10.31577/ahs-2022-0023.02.0033
- Sokáč, M., Velísková, Y., Gualtieri, C., 2019. Application of asymmetrical statistical distributions for 1D simulation of solute transport in streams. Water, 11, 10. https://doi.org/10.3390/w11102145
- Sonnenwald, F., Shuttleworth, J., Bailey, O., Williams, M., Frankland, J., Rhead, B., Mark, O., Wade, M.J., Guymer, I., 2023. Quantifying Mixing in Sewer Networks for Source Localization. Journal of Environmental Engineering, 149, 5. https://doi.org/10.1061/JOEEDU.EEENG-7134
- Stolz Jr, G., 1960. Numerical solutions to an inverse problem of heat conduction for simple shapes. J. Heat Transfer., 82, 1, 20–25. https://doi.org/10.1115/1.3679871
- Sun, A.Y., 2007. A robust geostatistical approach to contaminant source identification. Water Resources Research, 43, 2, 2418. https://doi.org/10.1029/2006WR005106
- Telci, I.T., Aral, M.M., 2011. Contaminant source location identification in river networks using water quality monitoring systems for exposure analysis. Water Quality, Exposure and Health, 2, 3–4, 205–218. https://doi.org/10.1007/s12403-011-0039-6
- Trujillo, D.M., 1978. Application of dynamic programming to the general inverse problem. International Journal for Numerical Methods in Engineering, 12, 4, 613–624.
- Tzatchkov, V.G., Aldama, A.A., Arreguin, F.I., 2002. Advection-dispersion-reaction modeling in water distribution networks. Journal of Water Resources Planning and Management, 128, 5, 334–342. https://doi.org/10.1061/(ASCE)0733-9496(2002)128:5(334)
- Urcikán, P., Imriška, L., 1986. Stokovanie a čistenie odpadových vôd. Tabuľky na výpočet stôk. (Sewerage and Waste Water Treatment. Tables for Sewer Design). SNTL Alfa, Bratislava. (In Slovak.)
- Van Genuchten, M.T., Leij, F.J., Skaggs, T.H., Toride, N., Bradford, S.A., Pontedeiro, E.M., 2013a. Exact analytical solutions for contaminant transport in rivers 1. The equilibrium advection-dispersion equation. J. Hydrol. Hydromech., 61, 2, 146–160. https://doi.org/10.2478/johh-2013-0020
- Van Genuchten, M.T., Leij, F.J., Skaggs, T.H., Toride, N., Bradford, S.A., Pontedeiro, E.M., 2013b. Exact analytical solutions for contaminant transport in rivers 2. Transient storage and decay chain solutions. J. Hydrol. Hydromech., 61, 3, 250–259. https://doi.org/10.2478/johh-2013-0032
- Wang, J., Zhao, J., Lei, X., Wang, H., 2018. New approach for point pollution source identification in rivers based on the backward probability method. Environmental Pollution, 241, 759–774. https://doi.org/10.1016/j.envpol.2018.05.093
- Wang, P., Cirpka, O.A., 2021. Surface transient storage under low-flow conditions in streams with rough bathymetry. Water Resources Research, 57, 12, e2021WR029899. https://doi.org/10.1029/2021WR029899
- Woodbury, A.D., Ulrych, T.J., 1996. Minimum relative entropy inversion: Theory and application to recovering the release history of a groundwater contaminant. Water Resources Research, 32, 9, 2671–2681. https://doi.org/10.1029/95WR03818
- Yeh, H., Der, Lin, C.C., Chen, C.F., 2016. Reconstructing the release history of a groundwater contaminant based on AT123D. Journal of Hydro-Environment Research, 13, 89–102. https://doi.org/10.1016/J.JHER.2015.06.001
- Zhang, Y.L., Xiao, M., Zheng, W.H., 2011. Study on sudden water pollution incidents of Guangdong Huanggang River. Applied Mechanics and Materials, 99, 131–135.