References
- Aggarwal, P.K., Alduchov, O.A., Froehlich, K.O., Araguás-Araguás, L., Sturchio, N.C., Kurita, N., 2012. Stable isotopes in global precipitation: A unified interpretation based on atmospheric moisture residence time. Geoph. Res. Let., 39, L11705. DOI: 10.1029/2012GL051937
- Bowen, G.J., Revenaugh, J., 2003. Interpolating the isotopic composition of modern meteoric precipitation. Water Resour. Res., 39, 10, 1299. DOI: 10.1029/2003WR002086
- Fourth National Communication of Georgia to the UNFCC (United Nations Framework Convention on Climate Change), 2021. Ministry of Environment Protection and Agriculture of Georgia, Tbilisi, 425 p.
- Fritz, P., 1981. River waters. In: Gat, J.R., Gonfiantini, R. (Eds.): Stable Isotopic Hydrology: Deuterium and Oxygen-18 in the Water Cycle. International Atomic Energy Agency, Technical Report Series, 210, pp. 177–201.
- Diadin, D., Vystavna, Y., 2020. Long-term meteorological data and isotopic composition in precipitation, surface water and groundwater revealed hydrologic sensitivity to climate change in East Ukraine. Isotopes in Environmental and Health Studies, 56, 2, 136–148. DOI: 10.1080/10256016.2020.1732369
- Chitanava, R., 2011. Current status on environmental hydrometeorology monitoring and data processing in Georgia. European Environment Agency national workshop, Tbilisi, Georgia, 2–3 December 2011.
- Gat, J.R., Bowser, C.J., Kendall, C., 1994. The contribution of evaporation from the Great Lakes to the continental atmosphere: Estimate based on stable isotope data, Geophys. Res. Lett., 21, 557–560.
- Gibson, J.J., Holmes, T., Stadnyk, T.A., Birks, S.J., Eby, P., Pietroniro, A., 2020. 18O and 2H in streamflow across Canada. J. Hydrol.: Reg. Stud., 32, 100754.
- Giustini, F., Brilli, M., Patera, A., 2016. Mapping oxygen stable isotopes of precipitation in Italy. J. Hydrol.: Regional Studies, 8, 162–181.
- Gourcy, L., Groening, M., Aggarwal, P.K., 2005. Stable oxygen and hydrogen isotopes. In: Aggarwal, P.K., Gat, J.R., Froehlich, K.F. O. (Eds.): Isotopes in the Water Cycle. Past, Present and Future of a Developing Science. Springer, pp. 39–52.
- Heydarizad, M., Gimeno, L., Sorí, R., Minaei, F., Mayvan, J.E., 2021a. The stable isotope characteristics of precipitation in the Middle East highlighting the link between the Köppen climate classifications and the 18O and 2H values of precipitation. Water, 2021, 13, 2397. https://doi.org/10.3390/w13172397
- Heydarizad, M., Minaei, M., Ichiyangi, K., Soprí, R., 2021b. The effects of local and regional parameters on the δ18O and δ2H values of precipitation and surface water resources in the Middle East. J. Hydrol., 600, 126485.
- Holko, L., Dóša, M., Michalko, J., Kostka, Z., Šanda, M., 2012. Isotopes of oxygen and deuterium in precipitation in Slovakia. J. Hydrol. Hydromech., 60, 4, 265–276. DOI: 10.2478/v10098-012-0023-2
- Jouzel, J., Merlivat, L., 1984. Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation. J. Geoph. Res., 89, 11, 749–11, 757. https://doi.org/10.1029/JD089iD07p11749
- Kendall, C., Coplen, T., 2001. Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol. Process., 15, 1363–1393. DOI: 10.1002/hyp.217
- Kern, Z., Kohan, B., Leuenberger, M., 2014. Precipitation isoscape of high reliefs: interpolation scheme designed and tested for monthly resolved precipitation oxygen isotope records of an Alpine domain. Atmos. Chem. Phys., 14, 4, 897–1907. DOI: 10.5194/acp-14-1897-2014
- Klaus, J., Chun, K.P., Stumpp, C., 2015. Temporal trends in δ18O composition of precipitation in Germany: insights from time series modelling and trend analysis. Hydrol. Process., 29, 2668–2680. DOI: 10.1002/hyp.10395
- Koeniger, P., Stumpp, C., Schmidt, A., 2022. Stable isotope patterns of German rivers with aspects on scales, continuity and network status. Isotopes in Environmental and Health Studies, 58, 4–6, 363–379. DOI: 10.1080/10256016.2022.2127702
- Mahindawansha, A., Jost, M., Gassmann, M., 2022. Spatial and temporal variations of stable isotopes in precipitation in the Mountainous Region, North Hesse. Water, 14, 3910. https://doi.org/10.3390/w14233910
- Landwehr, J.M., Coplen, T.B., 2006. Line-conditioned excess: a new method for characterizing stable hydrogen and oxygen isotope ratios in hydrologic systems. In: Proceedings of an International Conference Isotopes in Environmental Studies, 25–29 October 2004. Monaco, IAEA-CN-118/56, pp. 132–135.
- Melikadze, G., Jukova, N., Todadze, M., Vepkhvadze, S., Kapanadze, N., Chankvetadze, A., Jimsheladze, T., Vitvar, T., 2014. Evaluation of recharge origin of groundwater in the Alazani-Iori basins, using hydrochemical and isotope approaches. Journal of Georgian Geophysical Society, Issue A, Physics of Solid Earth, 17a, 53–64.
- Melikadze, G., Holko, L., Zhukova, N., Todazde, M., Vepkhvadze, S.G., Kapanadze, N.A., Chikadze, T.A., Qadjaia, G.T. 2015. Using Isotope Application for Assessment Water Origin in the Kakheti Region. Journal of the Georgian Geophysical Society, Issue B, Physics of Atmosphere, Ocean and Space Plasma, 18B, 22–32.
- Moreno, A., Iglesias, M., Azorin-Molina, C., Pérez-Mejías, C. Bartolomé, M., Sancho, C., Stoll, H., Cacho, I., Frigola, J., Osácar, C., Muñoz, A., Delgado-Huertas, A., Bladé, I., Vimeux, F., 2021. Measurement report: Spatial variability of northern Iberian rainfall stable isotope values – investigating atmospheric controls on daily and monthly timescales. Atmos. Chem. Phys., 21, 10159–10177. https://doi.org/10.5194/acp-21-10159-2021
- Nan, Y., Tian, F., Hu, H., Wang, L., Zhao, S., 2019. Stable isotope composition of river waters across the world. Water, 11, 1760. DOI: 10.3390/w11091760
- Putman, A.L., Fiorella, R., P., Bowen, G.J., Cai, Z., 2019. A global perspective on local meteoric water lines: Meta-analytic insight into fundamental controls and practical constraints. Water Resources Research, 55, 8, 6896–6910. https://doi.org/10.1029/2019WR025181
- Rank, D., Wyhlidal, S., Schott, K., Weigand, S., Oblin, A., 2017. Temporal and spatial distribution of isotopes in river water in Central Europe: 50 years experience with the Austrian network of isotopes in rivers. Isotopes in Environmental and Health Studies, 54, 2, 115–136. DOI: 10.1080/10256016.2017.1383906
- Reckerth, A., Stichler, W., Schmidt, A., Stumpp, C., 2017. Long-term data set analysis of stable isotopic composition in German rivers. J. Hydrol., 552, 718–731.
- Rozanski, K., Araguás-Araguás, L., Gonfiantini, R., 1992. Relation between long-term trends of Oxygen-18 isotope composition of precipitation and climate. Science, 258, 5084, 981–985.
- Rozanski, K., Araguás-Araguás, L., Gonfiantini, R., 1993. Isotopic patterns in modern global precipitation. In: Swart, P.K., Lohmann, K.C., McKenzie, J., Savin, S. (Eds): Climate Change in Continental Isotopic Records. Geophysics Monograph No. 78. American Geophysical Union, Washington, pp. 1–36.
- Sánchez-Murillo, R., Esquivel-Hernández, G., Welsh, K., Brooks, E.S., Boll, J., Alfaro-Solís, R., Valdés-González, J., 2013. Spatial and temporal variation of stable isotopes in precipitation across Costa Rica: An analysis of historic GNIP records. Open Journal of Modern Hydrology, 3, 226–240. http://dx.doi.org/10.4236/ojmh.2013.34027
- Stumpp, C., Klaus, J., Stichler, W., 2014. Analysis of long-term stable isotopic composition in German precipitation. J. Hydrol., 517, 351–361.
- Terzer, S., Wassenaar, L.I., Araguás-Araguás, L.J., Aggarwal, P.K., 2013. Global isoscapes for 18O and 2H in precipitation: improved prediction using regionalized climatic regression models. Hydrol. Earth Syst. Sci., 17, 4713–4728. DOI: 10.5194/hess-17-4713-2013
- Terzer-Wassmuth, S., Wassenaar, L.I., Welker, J.M., Araguás-Araguáas, L.J., 2021. Improved high-resolution global and regionalized isoscapes of δ18O, δ2H and d-excess in precipitation. Hydrological Processes, 35, 6, e14254. https://doi.org/10.1002/hyp.14254
- Vepkhvadze, S., Melikadze, G., Todadze, M., Malík, P., Gventsadze, A., 2019. Recharge and dynamics of a karst groundwater system in Kakheti (Eastern Georgia). Austrian Journal of Earth Sciences, 112/1, 42–49. DOI: 10.17738/ajes.2019.0003
- Vitvar, T., Aggarwal, P.K., Herczeg, A.L., 2007. Global network is launched to monitor isotopes in rivers. Eos. Trans. AGU, 88, 33, 324–326.
- UNDP, 2011. Regional Climate Change Impact Study for the South Caucasus Region. Tbilisi, Georgia, 62 p.
- Wang, J., Li, W., Wang, Y., Zhang, J., Xiao, S., 2021. Characteristics of stable isotopes in precipitation and their moisture sources in the Guanling region, Guizhou province. J. Chem., 2021, 5569793. https://doi.org/10.1155/2021/5569793
- World Bank, 2006. Drought Management and Mitigation Assessment for Central Asia and the Caucasus, Regional Country profiles and Strategies. 82 p.
- Yi, Y., Gibson, J.J., Cooper, L.W., Hélie, J.-F., Birks, S.J., McClelland, J.M., Holmes, R.M., Peterson, B., 2012. Isotopic signals (18O, 2H, 3H) of six major rivers draining the Pan-Arctic watershed. Glob. Biogeochem. Cycles, 26, GB1027. https://doi.org/10.1029/2011GB004159
- Yurtsever, Y., Gat, J.R., 1981. Atmospheric waters. In: Gat, J.R., Gonfiantini, R. (Eds.): Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle. International Atomic Energy Agency, Vienna, pp. 103–139.
- Zappa, M., Vitvar, T., Rücker, A., Melikadze, G., Bernhard, L., David, V., Jans-Singh, M., Zhukova, N., Sanda, M., 2015. A Tri-National program for estimating the link between snow resources and hydrological droughts. Proc. IAHS, 369, 25–30. https://doi.org/10.5194/piahs-369-25-2015
- Zhang, M., Wang, S.A., 2016. A review of precipitation isotope studies in China: Basic pattern and hydrological process. J. Geogr. Sci., 26, 7, 921–938. DOI: 10.1007/s11442-016-1307-y