Have a personal or library account? Click to login
Thermal regime of the Danube Delta and the adjacent lakes Cover

Thermal regime of the Danube Delta and the adjacent lakes

Open Access
|Aug 2023

References

  1. Adrian, R., O’Reilly, C.M., Zagarese, H., Baines, S., Hessen, D.O., Keller, W., Livingstone, D., Sommaruga, R., Straile, D., van Donk, E., Weyhenmeyer, G., Winder, M., 2009. Lakes as sentinels of climate change. Limnol. Oceanogr., 54, 6, 2283–2297. https://doi.org/10.4319/lo.2009.54.6_part_2.2283
  2. Alcântara, E.H., Stech, J.L., Lorenzzetti, J.A. et al., 2010. Remote sensing of water surface temperature and heat flux over a tropical hydroelectric reservoir. Remote Sensing of Environment, 114, 2651–2665. https://doi.org/10.1016/j.rse.2010.06.002
  3. Barsi, J.A., Schott, J.R., Hook, S.J., Raqueno, N.G., Markham, B.L., Radocinski, R.G., 2014. Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration. Remote Sens., 6, 11607–11626. https://doi.org/10.3390/rs61111607
  4. Basarin, B., Lukić, T., Pavić, D., Wilby, R.L., 2016. Trends and multi-annual variability of water temperatures in the river Danube, Serbia. Hydrological Processes, 30, 18, 3315. https://doi.org/10.1002/hyp.10863
  5. Czernecki, B., Ptak, M., 2018. The impact of global warming on lake surface water temperature in Poland – the application of empirical-statistical downscaling, 1971–2100. Journal of Limnology, 77, 2, 340–348. DOI: 10.4081/jlimnol.2018.1707
  6. Dokulil, M.T., 2014. Impact of climate warming on European inland waters. Inland Waters, 4, 27–40. DOI: 10.5268/IW-4.1.705
  7. Dyba, K., Ermida, S., Ptak, M., Piekarczyk, J., Sojka, M., 2022. Evaluation of methods for estimating lake surface water temperature using Landsat 8. Remote Sens., 14, 3839. https://doi.org/10.3390/rs14153839
  8. Gastescu, P., 2009. The Danube Delta Biosphere Reserve. Geography, biodiversity, protection, management. Rom. J. Geogr., 53, 2, 139–152.
  9. Graf, R., Wrzesiński, D., 2020. Detecting patterns of changes in river water temperature in Poland. Water, 12, 5, 1327. https://doi.org/10.3390/w12051327
  10. IPCC, 2022. Climate Change 2022. Impacts, Adaptation and Vulnerability. In: Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., Rama, B. (Eds.): Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, NY, USA, 3056 p. DOI: 10.1017/9781009325844
  11. Jawdhari, A., Mihăilescu, D.F., Fendrihan, S., Jujea, V., Stoilov-Linu, V., Negrea, B.-M., 2022. Silver carp (Hypophthalmichthys molitrix) (Asian Silver Carp) presence in Danube delta and Romania. A review with data on natural reproduction. Life, 12, 10, 1582. https://doi.org/10.3390/life12101582
  12. Kejna, M., Rudzki, M., 2021. Spatial diversity of air temperature changes in Poland in 1961–2018. Theoretical and Applied Climatology, 143, 1361–1379. https://doi.org/10.1007/s00704-020-03487-8
  13. Kuenzer, C., Renaud, F.G., 2012. Climate and environmental change in river deltas globally: expected impacts, resilience, and adaptation. In: Renaud, F.G., Kuenzer, C. (Eds.): The Mekong Delta System. Springer, pp. 7–46. DOI: 10.1007/978-94-007-3962-8_2
  14. Lieberherr, G., Wunderle, S., 2018. Lake surface water temperature derived from 35 Years of AVHRR sensor data for European lakes. Remote Sens., 10, 7, 990, 1–25. https://doi.org/10.3390/rs10070990
  15. Lovasz, G., 2012. Water temperatures of the Danube and Tisza Rivers in Hungary. Hungarian Geographical Bulletin, 61, 4, 317–325. https://ojs.mtak.hu/index.php/hungeobull/article/view/3018/2278
  16. Marin, L., Birsan, M.-V., Bojariu, R., Dumitrescu, A., Micu, D., Manea, A., 2014. An overview of annual climatic changes in Romania: trends in air temperature, precipitation, sunshine hours, cloud cover, relative humidity and wind speed during the 1961–2013 period. Carpathian Journal of Earth and Environmental Sciences, 9, 4, 253–258.
  17. Marszelewski, W., Pius, B., 2016. Long-term changes in temperature of river waters in the transitional zone of the temperate climate: A case study of Polish rivers. Hydrological Sciences Journal, 61, 1430–1442. https://doi.org/10.1080/02626667.2015.1040800
  18. Panin, N., Jipa, D., 2002. Danube River Sediment Input and its Interaction with the North-western Black Sea. Estuarine, Coastal and Shelf Science, 54, 3, 551–562. https://doi.org/10.1006/ecss.2000.0664
  19. Pekarova, P., Halmova, D., Miklanek, P., Onderka, M., Pekar, J., Skoda, P., 2008. Is the water temperature of the Danube River at Bratislava, Slovakia, rising? Journal of Hydrometeorology, 9, 5, 1115–1122. https://doi.org/10.1175/2008JHM948.1
  20. Ptak, M., Sojka, M., Choiński, A., Nowak, B., 2018. Effect of environmental conditions and morphometric parameters on surface water temperature in Polish lakes. Water, 2018, 10, 580. DOI: 10.3390/w10050580
  21. Ptak, M., Sojka, M., Nowak, B., 2020. Effect of climate warming on a change in thermal and ice conditions in the largest lake in Poland – Lake Sniardwy. J. Hydrol. Hydromech., 68, 3, 260–270. DOI: 10.2478/johh-2020-0024
  22. Ptak, M., Sojka, M., Graf, R., Choiński, A., Zhu, S., Nowak, B., 2022. Warming Vistula River – the effects of climate and local conditions on water temperature in one of the largest rivers in Europe. J. Hydrol. Hydromech., 70, 1, 1–11. https://doi.org/10.2478/johh-2021-0032
  23. Reinart, A., Reinhold, M., 2008. Mapping surface temperature in large lakes with MODIS data. Remote Sensing of Environment, 112, 603–611. https://doi.org/10.1016/j.rse.2007.05.015
  24. Schaeffer, B.A., Iiames, J., Dwyer, J. et al., 2018. An initial validation of Landsat 5 and 7 derived surface water temperature for U.S. lakes, reservoirs, and estuaries. International Journal of Remote Sensing, 39, 7789–7805. https://doi.org/10.1080/01431161.2018.1471545
  25. Sharaf, N., Fadel, A., Bresciani, M., Giardino, C., Lemaire, B.J., Slim, K., Faour, G., Vinçon-Leite, B., 2019. Lake surface temperature retrieval from Landsat-8 and retrospective analysis in Karaoun Reservoir, Lebanon. Journal of Applied Remote Sensing, 13, 4, 1–14. https://doi.org/10.1117/1.JRS.13.044505
  26. Shumova, N., 2018. The effect of the Volga-Kama Cascade of water reservoirs on the Lower Volga hydrological regime. Acta Hydrologica Slovaсa, 19, 2, 278–286.
  27. Stan, F.-I., Neculau, G., Zaharia, L., Ioana-Toroimac, G., Mihalache, S., 2016. Study on the evaporation and evapotranspiration measured on the Căldăruşani Lake (Romania). Procedia Environmental Sciences, 32, 281–289. DOI: 10.1016/j.proenv.2016.03.033
  28. Strat, D., 2014. The bioclimate and trend of growing season in the eastern Danube Delta area over 1951–2000 period. Analele Universitătii din Oradea, Seria Geografie, XXIV, 2/2014 (December), 1008–1116. http://istgeorelint.uoradea.ro/Reviste/Anale/anale.htm
  29. Vliet, M.T.H., Ludwig, F., Zwolsman, J.J.G., Weedon, G.P., Kabat, P., 2011. Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resources Research, 47, W02544. DOI: 10.1029/2010WR009198
  30. Vyshnevskyi, V.I., 2020. Temperature and ice regimes of waterbodies under the impacts of global warming and a hydropower plant. Meteorology, Hydrology and Water Management, 2, 38–45. DOI: 10.26491/mhwm/127538
  31. Vyshnevskyi, V.I., Kutsiy, A.V., 2022. Long-term Changes in the Water Regime of Rivers in Ukraine. Naukova Dumka, Kiev, 252 p. (In Ukrainian.) https://er.nau.edu.ua/handle/NAU/56293
  32. Vyshnevskyi, V., Shevchuk, S., 2021. Thermal regime of the Dnipro Reservoirs. J. Hydrol. Hydromech., 69, 3, 300–310. DOI: 10.2478/johh-2021-0016
  33. Vyshnevskyi, V., Shevchuk, S., 2022. Impact of climate change and human factors on the water regime of the Danube Delta. Acta Hydrologica Slovaca, 23, 2, 207–216. DOI: 10.31577/ahs-2022-0023.02.0023
  34. Webb, B.W., Nobilis, F., 2007. Long-term changes in river temperature and the influence of climatic and hydro-logical factors. Hydrolog. Sci. J., 52, 74–85. https://doi.org/10.1623/hysj.52.1.74
  35. Woolway, R.I., Dokulil, M.T., Marszelewski, W., Schmid, M., Damien Bouffard, D., Merchant, C.J., 2017. Warming of Central European lakes and their response to the 1980s climatic regime shift. Climate Change, 141, 759–773. DOI: 10.1007/s10584-017-1966-4
  36. Wrzesiński, D., Graf, R., 2022. Temporal and spatial patterns of the river flow and water temperature relations in Poland. J. Hydrol. Hydromech., 70, 1, 12–29. https://doi.org/10.2478/johh-2021-0033
  37. Živković, M.M., Andelković, A.A., Cvijanović, D.L., Novković, M.Z., Vukov, D.M., Šipoš, Š. Š., Ilić, M.M., Pankov, N.P., Miljanović, B.M., Marisavljević, D.P., Pavlović, D.M., Radulović, S.B., 2019. The beginnings of Pistia stratiotes L. invasion in the lower Danube delta: the first record for the Province of Vojvodina (Serbia). Bioinvasions Records, 8, 2, 218–229. https://doi.org/10.3391/bir.2019.8.2.03
DOI: https://doi.org/10.2478/johh-2023-0015 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 283 - 292
Submitted on: Jun 21, 2022
Accepted on: Mar 29, 2023
Published on: Aug 10, 2023
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Viktor Vyshnevskyi, Serhii Shevchuk, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.