Have a personal or library account? Click to login
Alterations in aggregate characteristics of thermally heated water-repellent soil aggregates under laboratory conditions Cover

Alterations in aggregate characteristics of thermally heated water-repellent soil aggregates under laboratory conditions

Open Access
|May 2023

References

  1. Arcenegui, V., Mataix-Solera, J., Guerrero, C., Zornoza, R., Mataix-Beneyto, J., García-Orenes, F., 2008. Immediate effects of wildfires on water repellency and aggregate stability in Mediterranean calcareous soils. Catena, 74, 3, 219–226. https://doi.org/10.1016/j.catena.2007.12.008
  2. Atanassova, I., Doerr, S.H., 2010. Organic compounds of different extractability in total solvent extracts from soils of contrasting water repellency. European Journal of Soil Science, 61, 2, 298–313. https://doi.org/10.1111/j.1365-2389.2009.01224.x
  3. Badía-Villas, D., González-Pérez, J.A., Aznar, J.M., Arjona-Gracia, B., Martí-Dalmau, C., 2014. Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: Soil depth affected by fire. Geoderma, 213, 400–407.
  4. Benito, E., Varela, E., Rodríguez-Alleres, M., 2019. Persistence of water repellency in coarse-textured soils under various types of forests in NW Spain. Journal of Hydrology and Hydromechanics, 67, 2, 129–134. https://doi.org/10.2478/johh-2018-0038
  5. Bernier, P.Y., Gauthier, S., Jean, P.O., Manka, F., Boulanger, Y., Beaudoin, A., Guindon, L., 2016. Mapping local effects of forest properties on fire risk across Canada. Forests, 7, 8, 157. https://doi.org/10.3390/f7080157
  6. Bisdom, E.B.A., Dekker, L.W., Schoute, J.F.T., 1993. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma, 56, 105–118. https://doi.org/10.1016/B978-0-444-81490-6.50013-3
  7. Blake, G.R., Hartge, K.H., 1986a. Bulk density. In: Klute, A. (Ed.): Methods of Soil Analysis. Part 1: Physical and Miner-alogical Methods. 2nd Ed. Soil Science Society of America, Madison, WI, pp. 363–375. https://doi.org/10.2136/sssabookser5.1.2ed.c13
  8. Blake, G.R., Hartge, K.H., 1986b. Particle density. In: Klute, A. (Ed.): Methods of Soil Analysis. Part 1: Physical and Miner-alogical Methods. 2nd Ed. Soil Science Society of America, Madison, WI, pp. 377–382. https://doi.org/10.2136/sssabookser5.1.2ed.c14
  9. Blanco-Canqui, H., Lal, R., 2009. Extent of soil water repellency under long-term no-till soils. Geoderma, 149,1–2, 171–180. https://doi.org/10.1016/j.geoderma.2008.11.036
  10. Butzen, V., Seeger, M., Marruedo, A., de Jonge, L., Wengel, R., Ries, J.B., Casper, M.C., 2015. Water repellency under coniferous and deciduous forest – Experimental assessment and impact on overland flow. Catena, 133, 255–265. https://doi.org/10.1016/j.catena.2015.05.022
  11. Bruns, T.D., Chung, J.A., Carver, A.A., Glassman, S.I., 2020. A simple pyrocosm for studying soil microbial response to fire reveals a rapid, massive response by Pyronema species. PLoS One, 15, 3, e0222691. https://doi.org/10.1371/journal.pone.0222691
  12. Bryant, R., Doerr, S.H., Helbig, M., 2005. Effect of oxygen deprivation on soil hydrophobicity during heating. International Journal of Wildland Fire, 14, 4, 449–455. https://doi.org/10.1071/WF05035
  13. Caltabellotta, G., Iovino, M., Bagarello, V., 2022. Intensity and persistence of water repellency at different soil moisture contents and depths after a forest wildfire. Journal of Hydrology and Hydromechanics, 70, 4, 410–420. https://doi.org/10.2478/johh-2022-0031
  14. Carrillo, M.L.K., Yates, S.R., Letey, J., 1999. Measurement of initial soil‐water contact angle of water repellent soils. Soil Science Society of America Journal, 63, 3, 433–436. https://doi.org/10.2136/sssaj1999.03615995006300030002x
  15. Chenu, C., Le Bissonnais, Y., Arrouays, D., 2000. Organic matter influence on clay wettability and soil aggregate stability. Soil Science Society of America Journal, 64, 4, 1479–1486. DOI:10.2136/sssaj2000.6441479x
  16. Dao, M.T., Henry, D.J., Dell, B., Daniel, N.R., Harper, R.J., 2022. Induction of water repellency by leaves of contrasting Australian native species: effects of composition and heating. Plant and Soil, 478, 1–2, 505–517. https://doi.org/10.1007/s11104-022-05492-4
  17. DeBano, L.F., 2000. The role of fire and soil heating on water repellency in wildland environments: a review. Journal of Hydrology, 231, 195–206. https://doi.org/10.1016/S0022-1694(00)00194-3
  18. De Gryze, S., Jassogne, L., Bossuyt, H., Six, J., Merckx, R., 2006. Water repellence and soil aggregate dynamics in a loamy grassland soil as affected by texture. Eur. J. Soil Sci., 57, 2, 235–246. https://doi.org/10.1111/j.1365-2389.2005.00733.x
  19. Doerr, S.H., Blake, W.H., Shakesby, R.A., Stagnitti, F., Vuurens, S.H., Humphreys, G.S., Wallbrink, P., 2004. Heating effects on water repellency in Australian eucalypt forest soils and their value in estimating wildfire soil temperatures. International Journal of Wildland Fire, 13, 2, 157–163. https://doi.org/10.1071/WF03051
  20. Doerr, S.H., Douglas, P., Evans, R.C., Morley, C.P., Mullinger, N.J., Bryant, R., Shakesby, R.A., 2005. Effects of heating and post-heating equilibration times on soil water repellency. Soil Res., 43,3, 261–267. https://doi.org/10.1071/SR04092
  21. Doerr, S.H., Shakesby, R.A., Blake, W.H., Chafer, C.J., Humphreys, G.S., Wallbrink, P.J., 2006. Effects of differing wild-fire severities on soil wettability and implications for hydro-logical response. Journal of Hydrology, 319, 1–4, 295–311. https://doi.org/10.1016/j.jhydrol.2005.06.038
  22. Fajković, H., Ivanić, M., Nemet, I., Rončević, S., Kampić, Š., Vazdar, D., 2022. Heat–induced changes in soil properties: fires as cause for remobilization of chemical elements. Journal of Hydrology and Hydromechanics, 70, 4, 421–431. https://doi.org/10.2478/johh-2022-0024
  23. García-Corona, R., Benito, E., De Blas, E., Varela, M.E., 2004. Effects of heating on some soil physical properties related to its hydrological behaviour in two north-western Spanish soils. International Journal of Wildland Fire, 13, 2, 195–199. https://doi.org/10.1071/WF03068
  24. Gee, G.W., Bauder, J.W., 1986. Particle size analysis. In: Klute, A. (Ed.): Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. Agronomy Monograph 9 (2nd Edition). Amer. Soc. Agron., Madison, WI, pp. 383–411.
  25. Giovannini, C., Lucchesi, S., Giachetti, M., 1990. Effects of heating on some chemical parameters related to soil fertility and plant growth. Soil Science, 149, 6, 344–350. https://doi.org/10.1097/00010694-199006000-00005
  26. González-Pérez, J.A., González-Vila, F.J., Almendros, G., Knicker, H., 2004. The effect of fire on soil organic matter – a review. Environment International, 30, 6, 855–870. https://doi.org/10.1016/j.envint.2004.02.003
  27. Guerrero, C., Mataix-Solera, J., Navarro-Pedreño, J., García-Orenes, F., Gómez, I., 2001. Different patterns of aggregate stability in burned and restored soils. Arid Land Research and Management, 15, 2, 163–171. https://doi.org/10.1080/15324980151062823
  28. Hološ, S., Šurda, P., Lichner, Ľ., Zvala, A., Píš, V., 2022. Fire-induced changes in soil properties depend on age and type of forests. Journal of Hydrology and Hydromechanics, 70, 4, 442-449. https://doi.org/10.2478/johh-2022-0034
  29. Iovino, M., Pekárová, P., Hallett, P.D., Pekár, J., Lichner, Ľ., Mataix-Solera, J., Alagna, V., Walsh, R., Raffan, A., Schacht, K., Rodný, M., 2018. Extent and persistence of soil water repellency induced by pines in different geographic regions. Journal of Hydrology and Hydromechanics, 66, 4, 360–368. https://doi.org/10.2478/johh-2018-0024
  30. Kajiura, M., Tokida, T., Seki, K., 2012. Effects of moisture conditions on potential soil water repellency in a tropical forest regenerated after fire. Geoderma, 181, 30–35. https://doi.org/10.1016/j.geoderma.2012.02.028
  31. Kobayashi, M., Shimizu, T., 2007. Soil water repellency in a Japanese cypress plantation restricts increases in soil water storage during rainfall events. Hydrological Processes, 21, 2356–2364. https://doi.org/10.1002/hyp.6754
  32. Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263.
  33. Leelamanie, D.A.L., 2016. Occurrence and distribution of water repellency in size fractionated coastal dune sand in Sri Lanka under Casuarina shelterbelt. Catena, 142, 206–212. https://doi.org/10.1016/j.catena.2016.03.026
  34. Leelamanie, D.A.L., Karube, J., Yoshida, A., 2008. Characterizing water repellency indices: Contact angle and water drop penetration time of hydrophobized sand. Soil Science & Plant Nutrition, 54, 2, 179–187. https://doi.org/10.1111/j.1747-0765.2007.00232.x
  35. Leelamanie, D.A.L., Nishiwaki, J., 2019. Water repellency in Japanese coniferous forest soils as affected by drying temperature and moisture. Biologia, 74, 2, 127–137. https://doi.org/10.2478/s11756-018-0157-8
  36. Leelamanie, D.A.L., Piyaruwan, H.I.G.S., Jayasinghe, P.K.S.C., Senevirathne, P.A.N.R., 2021. Hydrophysical characteristics in water-repellent tropical Eucalyptus, Pine, and Casuarina plantation forest soils. Journal of Hydrology and Hydromechanics, 69, 4, 447–455. https://doi.org/10.2478/johh-2021-0027
  37. Letey, J., Carrillo, M.L.K., Pang, X.P., 2000. Approaches to characterize the degree of water repellency. Journal of Hydrology, 231, 61–65. https://doi.org/10.1016/S0022-1694(00)00183-9
  38. Li, T., Jeřábek, J., Winkler, J., Vaverková, M.D., Zumr, D., 2022. Effects of prescribed fire on topsoil properties: A small-scale straw burning experiment. Journal of Hydrology and Hydromechanics, 70, 4, 450–461.
  39. Lichner, L.U., Hallett, P., Feeney, D., Ďugová, O., Šír, M., Tesař, M., 2007. Field measurement of soil water repellency and its impact on water flow under different vegetation. Biologia, 62, 5, 537–541. https://doi.org/10.2478/s11756-007-0106-4
  40. Lichner, Ľ., Capuliak, J., Zhukova, N., Holko, L., Czachor, H., Kollár, J., 2013. Pines influence hydrophysical parameters and water flow in a sandy soil. Biologia, 68, 6, 1104–1108. https://doi.org/10.2478/s11756-013-0254-7
  41. Lin, C.Y., Chou, W.C., Tsai, J.S., Lin, W.T., 2006. Water repellency of Casuarina windbreaks (Casuarina equisetifolia Forst.) caused by fungi in central Taiwan. Ecol. Eng., 26, 283–292. https://doi.org/10.1016/j.ecoleng.2005.10.010
  42. Martinez-Murillo, J.F., Remond, R., Ruiz-Sinoga, J.D., 2020. Validation of RUSLE K factor using aggregate stability in contrasted mediterranean eco-geomorphological landscapes (southern Spain). Environmental research, 183, p.109160.
  43. Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., Zavala, L.M., 2011. Fire effects on soil aggregation: a review. Earth Sci. Rev., 109, 1–2, 44–60. https://doi.org/10.1016/j.earscirev.2011.08.002
  44. Mataix-Solera, J., Doerr, S.H., 2004. Hydrophobicity and aggregates stability in calcareous topsoils from fire-affected pine forest in southeastern Spain. Geoderma, 118, 77–88. https://doi.org/10.1016/S0016-7061(03)00185-X
  45. Neary, D.G., Klopatek, C.C., DeBano, L.F., Ffolliott, P.F., 1999. Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management, 122, 1–2, 51–71. https://doi.org/10.1016/S0378-1127(99)00032-8
  46. Negri, S., Stanchi, S., Celi, L., Bonifacio, E., 2021. Simulating wildfires with lab-heating experiments: Drivers and mechanisms of water repellency in alpine soils. Geoderma, 402, 115357. https://doi.org/10.1016/j.geoderma.2021.115357
  47. Novák, V., Lichner, Ľ., Zhang, B., Kňava, K., 2009. The impact of heating on the hydraulic properties of soils sampled under different plant cover. Biologia, 64, 3, 483–486. https://doi.org/10.2478/s11756-009-0099-2
  48. Piyaruwan, H.I.G.S., Leelamanie, D.A.L., 2020. Existence of water repellency and its relation to structural stability of soils in a tropical Eucalyptus plantation forest. Geoderma, 380, 114679. https://doi.org/10.1016/j.geoderma.2020.114679
  49. Plaza-Álvarez, P.A., Lucas-Borja, M.E., Sagra, J., Moya, D., Alfaro-Sánchez, R., González-Romero, J., De las Heras, J., 2018. Changes in soil water repellency after prescribed burnings in three different Mediterranean forest ecosystems. Science of the total environment, 644, 247–255.
  50. Poulenard, J., Michel, J.C., Bartoli, F., Portal, J.M., Podwojewski, P., 2004. Water repellency of volcanic ash soils from Ecuadorian paramo: effect of water content and characteristics of hydrophobic organic matter. European Journal of Soil Science, 55, 3, 487–496. https://doi.org/10.1111/j.1365-2389.2004.00625.x
  51. Reynolds, S.G., 1970. The gravimetric method of soil moisture determination. Part III. An examination of factors influencing soil moisture variability. J. Hydrol., 11, 3, 288–300.
  52. Roy, J.L., McGill, W.B., 2002. Assessing soil water repellency using the molarity of ethanol droplet (MED) test. Soil Sci., 167, 2, 83–97. https://doi.org/10.1097/00010694-200202000-00001
  53. Scarff, F.R., Westoby, M., 2006. Leaf litter flammability in some semi-arid Australian woodlands. Functional Ecology, 20, 745–752. https://doi.org/10.1111/j.1365-2435.2006.01174.x
  54. Schumacher, B.A., 2002. Methods for the determination of total organic carbon (TOC) in soils and sediments. Ecological Risk Assessment Support Center 2002, 1–23.
  55. Soil Survey Staff, 2014. Keys to Soil Taxonomy. 12th ed. USDA-Natural Resources Conservation Service, Washington, DC.
  56. Soto, B., Benito, E., Díaz-Fierros, F., 1991. Heat-induced degradation processes in forest soils. International Journal of Wildland Fire, 1, 3, 147–152. https://doi.org/10.1071/WF9910147
  57. Terefe, T., Mariscal-Sancho, I., Peregrina, F., Espejo, R., 2008. Influence of heating on various properties of six Mediterranean soils: A laboratory study. Geoderma, 143, 3–4, 273–280. https://doi.org/10.1016/j.geoderma.2007.11.018
  58. Varela, M.E., Benito, E., Keizer, J.J., 2010. Effects of wildfire and laboratory heating on soil aggregate stability of pine forests in Galicia: The role of lithology, soil organic matter content and water repellency. Catena, 83, 2–3, 127–134. https://doi.org/10.1016/j.catena.2010.08.001
  59. Villamil, M.B., Little, J., Nafziger, E.D., 2015. Corn residue, till-age, and nitrogen rate effects on soil properties. Soil and Tillage Res., 151, 61–66. https://doi.org/10.1016/j.still.2015.03.005
  60. Vogelmann, E.S., Reichert, J.M., Prevedello, J., Awe, G.O., Mataix-Solera, J., 2013. Can occurrence of soil hydrophobicity promote the increase of aggregates stability? Catena 110, 24–31. https://doi.org/10.1016/j.catena.2013.06.009
  61. Walden, L.L., Harper, R.J., Mendham, D.S., Henry, D.J., Fontaine, J.B., 2015. Eucalyptus reforestation induces soil water repellency. Soil Res., 53, 2, 168–177. https://doi.org/10.1071/SR13339
  62. Whelan, A., Kechavarzi, C., Coulon, F., Doerr, S.H., 2014. Experimental characterization of the impact of temperature and humidity on the breakdown of soil water repellency in sandy soils and composts. Hydrol. Process., 29, 8, 2065–2073. https://doi.org/10.1002/hyp.10305
  63. Zavala, L.M., Granged, A.J., Jordán, A., Bárcenas-Moreno, G., 2010. Effect of burning temperature on water repellency and aggregate stability in forest soils under laboratory conditions. Geoderma, 158, 3–4, 366–374. https://doi.org/10.1016/j.geoderma.2010.06.004
DOI: https://doi.org/10.2478/johh-2023-0009 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 177 - 187
Submitted on: Jan 14, 2023
Accepted on: Mar 7, 2023
Published on: May 14, 2023
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 H. T. M. Perera, D. A. L. Leelamanie, Morihiro Maeda, Yasushi Mori, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.