Have a personal or library account? Click to login
Effect of gravel content on soil water retention characteristics and thermal capacity of sandy and silty soils Cover

Effect of gravel content on soil water retention characteristics and thermal capacity of sandy and silty soils

Open Access
|Feb 2023

References

  1. Abu-Hamdeh, N.H., 2003. Thermal properties of soils as affected by density and water content. Biosyst. Eng., 86, 1, 97–102. DOI: 10.1016/S1537-5110(03)00112-0
  2. Ad-Hoc AG Boden, 2005. Bodenkundliche Kartieranleitung (KA5). 5th Ed. Bundesanstalt für Geowissenschaften und Rohstoffe, E. Schweitzerbart’sche Verlagsbuchhandlung, Stuttgart.
  3. Ahmad, S., Rizvi, Z.H., Arp, J.C.C., Wuttke, F., Tirth, V., Islam, S., 2021. Evolution of temperature field around underground power cable for static and cyclic heating. Energies, 14, 8191. https://doi.org/10.3390/en1423819110.3390/en14238191
  4. Arkhangelskaya, T., Lukyashchenko, K., 2018. Estimating soil thermal diffusivity at different water contents from easily available data on soil texture, bulk density, and organic carbon content. Biosyst. Eng., 168, 83–95. DOI: 10.1016/j.biosystemseng.2017.06.011
  5. Arkhangelskaya, T., 2020. Parameters of the thermal diffusivity vs. water content function for mineral soils of different textural classes. Eurasian Soil Sci., 53, 39–49. DOI: 10.1134/S1064229320010032
  6. Beck-Broichsitter, S., Gerke, H.H., Horn, R., 2018. Shrinkage characteristics of boulder marl as sustainable mineral liner material for landfill capping systems. Sustainability, 10, 11, 4025. DOI: 10.3390/su10114025
  7. Beck-Broichsitter, S., Gerke, H.H., Leue, M., von Jeetze, P.J., Horn, R., 2020b. Anisotropy of unsaturated soil hydraulic properties of eroded Luvisol after conversion to hayfield comparing alfalfa and grass plots. Soil Till. Res., 198, 104553. DOI: 10.1016/j.still.2019.104553
  8. Beck-Broichsitter, S., Dusek, J., Vogel, T., Horn, R., 2022. Anisotropy of soil water diffusivity of hillslope soil under spruce forest derived by x-ray CT and lab experiments. Environ. Earth Sci., 81, 457.10.1007/s12665-022-10511-9
  9. Bertermann, D., Mueller, J., Freitag, S., Schwarz, H., 2018. Comparison between measured and calculated thermal conductivities within different grain size classes and their related depth ranges. Soil Syst., 2, 3, 50. DOI: 10.3390/soilsystems2030050
  10. Blake, G.R., Hartge, K.H., 1986. Bulk density. In: Klute, A. (Ed.): Methods of Soil Analysis: Part 1 Physical and Miner-alogical Methods. 2nd ed. ASA and SSSA, Madison, WI, USA, pp. 363–375.10.2136/sssabookser5.1.2ed.c13
  11. Bouwer, H., Rice, R.C. 1984. Hydraulic properties of stony vadose zones. Ground Water, 22, 6, 696–705. DOI: 10.1111/j.1745-6584.1984.tb01438.x
  12. Bronick, C.J., Lal, R., 2005. Soil structure and management: a review. Geoderma, 124, 3–22. DOI: 10.1016/j.geoderma. 2004.03.005
  13. Chapuis, R.P., 2004. Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Can. Geotech. J., 2004, 41, 787–795. DOI: 10.1139/t04-022
  14. Chief, K., Ferre, T.P.A., Hinnell, A.C., 2008. The effects of anisotropy on in situ air permeability measurements. Vadose Zone J., 7, 941–947. DOI: 10.2136/vzj2007.0164
  15. Corti, G., Ugolini, F.C., Agnelli, A., Certini, G., Cuniglio, R., Berna, F., Fernandez, M.J., 2002. The soil skeleton, a forgotten pool of carbon and nitrogen in soil. Eur. J. Soil Sci., 53, 283–298. DOI: 10.1046/j.1365-2389.2002.00442.x
  16. de Vries, D.A., 1963. Thermal properties of soils. In: van Wijk, W.R. (Ed.): Physics of Plant Environment. John Wiley and Sons, Inc., New York.
  17. Dong, Y., McCartney, J.S., Lu, N., 2015. Critical review of thermal conductivity models for unsaturated soils. Geotech. Geol. Eng., 33, 207–221. DOI: 10.1007/s10706-015-9843-2
  18. Fies, J. C., Louvigny, D.E., Chanzy, A., 2002. The role of stones in soil water retention. Eur. J. Soil Sci., 53, 1, 95–104. DOI: 10.1046/j.1365-2389.2002.00431.x
  19. Haghverdi, A., Najarchi, M., Öztürk, H.S., Durner, W., 2020. Studying unimodal, bimodal, PDI and bimodal-PDI variants of multiple soil water retention models: I. Direct model fit using the extended evaporation and dewpoint methods. Water, 12, 3, 900. https://doi.org/10.3390/w1203090010.3390/w12030900
  20. Hartge, K.H., Horn, R., 2016. Essential Soil Physics: An Introduction to Soil Processes, Structure, and Mechanics. Schweizerbart Science Publishers, Stuttgart, Germany, 392 p.
  21. Hasler, M., Horton, L.A., 2008. Multiple contrast tests in the presence of heteroscedasticity. Biometrical J., 50, 793–800. DOI: 10.1002/bimj.20071046618932141
  22. Hlavacikova, H., Novak, V., Holko, L., 2015. On the role of rock fragments and initial soil water content in the potential sub-surface runoff formation. J. Hydrol. Hydromech., 63, 1, 71–81. DOI: 10.1515/johh-2015-0002
  23. Howard, J., 2017. The Nature and Significance of Anthropogenic Soils. In: Anthropogenic Soils. Progress in Soil Science. Springer, Cham. DOI: 10.1007/978-3-319-54331-4_1
  24. Iden, S., Durner, W., 2014. Comment on “Simple consistent models for water retention and hydraulic conductivity in the complete moisture range” by A. Peters. Water Resour. Res., 50, 7530–7534. DOI: 10.1002/2014WR015937
  25. Lu, Y., Liu, S., Zjang, Y., Wang, L., Li, Z., 2021. Hydraulic conductivity of gravelly soils with various coarse particle contents subjected to freeze–thaw cycles. J. Hydrol., 598, 126302. DOI: 10.1016/j.jhydrol.2021.126302
  26. Maroof, M.A., Eidgahee, D.R., Mahboubi, A., 2022. Particle Morphology Effect on the Soil Pore Structure. In: Feng, G. (Ed.): Proceedings of the 8th International Conference on Civil Engineering. ICCE 2021. Lecture Notes in Civil Engineering, vol 213. Springer, Singapore. DOI: 10.1007/978-981-19-1260-3_1
  27. Miller, R. B., Heeren, D.M., Fox, G.A., Halihan, T., Storm, D.E., Mittelstet, A.R., 2014. The hydraulic conductivity structure of gravel-dominated vadose zones within alluvial floodplains. J. Hydrol., 513, 229–240. DOI: 10.1016/j.jhydrol.2014.03.046
  28. Naseri, M., Iden, S.C., Richter, N., Durner, W., 2019. Influence of stone content on soil hydraulic properties: experimental investigation and test of existing model concepts. Vadose Zone J., 18, 1, 1–10. DOI: 10.2136/vzj2018.08.0163
  29. Novak, V., Knava, K., Simunek, J., 2011. Determining the influence of stones on hydraulic conductivity of saturated soils using numerical method. Geoderma, 161, 177–181. DOI: 10.1016/j.geoderma.2010.12.016
  30. Pertassek, T., Peters, A., Durner, W., 2015. HYPROP-FIT software user’s manual, V.3.0. UMS GmbH, Munich, Germany.
  31. Peters, A., 2013. Simple consistent models for water retention and hydraulic conductivity in the complete moisture range. Water Resour. Res., 49, 6765–6780. DOI: 10.1002/wrcr.20548
  32. Peters, A., 2014. Reply to comment by S. Iden and W. Durner on “Simple consistent models for water retention and hydraulic conductivity in the complete moisture range”. Water Re-sour. Res., 50, 7535–7539. DOI: 10.1002/2014WR016107.
  33. Poeplau, C., Vos, C., Don, A., 2017. Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content. Soil, 3, 61–66. DOI: 10.5194/soil-3-61-2017
  34. R Development Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  35. Rerak, M., Ocłon, P., 2017. Thermal analysis of underground power cable system. J. Therm. Sci., 26, 5, 465–471. DOI: 10.1007/s11630-017-0963-2
  36. Rytter, R.-M., 2012. Stone and gravel contents of arable soils influence estimates of C and N stocks. Catena, 95, 153–159. DOI: 10.1016/j.catena.2012.02.015
  37. Rizvi, Z.H., Zaidi, H.H., Akhtar, S.J., Sattari, A., Wuttke, F., 2020. Soft and hard computation methods for estimation of the effective thermal conductivity of sands. Heat Mass Transf., 56, 6, 1947–1959. DOI: 10.1007/s00231-020-02833-w
  38. Rizvi, Z.H., Akhtar, S.J., Husain, S.M.B., Khan, M., Haider, H., Naqvi, S., Tirth, V., Wuttke, F., 2022. Neural network approaches for computation of soil thermal conductivity. Mathematics, 10, 3957. https://doi.org/10.3390/math1021395710.3390/math10213957
  39. Sauer, T.J., Logsdon, S.D., 2002. Hydraulic and physical properties of stony soils in a small watershed. Soil. Sci. Soc. Am. J., 66, 1947–1956. DOI: 10.2136/sssaj2002.1947
  40. Shakoor, A., Cook, B.D., 1990. The effect of stone content, size, and shape on engineering properties of a compacted silty clay. Bull. Assoc. Eng. Geol., 27, 2, 245–253. DOI: 10.2113/GSEEGEOSCI.XXVII.2.245
  41. She, K., Horn, D., Canning, P., 2006. Porosity and hydraulic conductivity of mixed sand-gravel sediment. In: Proc. 41st Defra Flood and Coastal Management Conference, 4 - 6 July 2006, York, UK.
  42. USDA/NRCS. 2005. United States Department of Agriculture, Natural Resources Conservation Service, Soil Survey Manual. 1993, updated 2005. online source: http://soils.usda.gov/technical/manual/.
  43. USDA/NRCS, 2007. United States Department of Agriculture, Natural Resources Conservation Service. Saturated hydraulic conductivity in relation to soil texture. online source: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/office/ssr10/tr/?cid=nrcs144p2_074846
  44. van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892–898. DOI: 10.2136/sssaj1980.03615995004400050002x
DOI: https://doi.org/10.2478/johh-2023-0001 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 1 - 10
Submitted on: Aug 30, 2022
Accepted on: Jan 3, 2023
Published on: Feb 4, 2023
Published by: Slovak Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Steffen Beck-Broichsitter, Zarghaam Haider Rizvi, Rainer Horn, Frank Wuttke, published by Slovak Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.