Have a personal or library account? Click to login
Effects of pore size and pore connectivity on trapped gas saturation Cover

Effects of pore size and pore connectivity on trapped gas saturation

Open Access
|Feb 2023

References

  1. Afzali, S., Rezaei, N., Zendehboudi, S., 2018. A comprehensive review on enhanced oil recovery by water alternating gas (WAG) injection. Fuel, 227, 218–246. <a href="https://doi.org/10.1016/j.fuel.2018.04.01510.1016/j.fuel.2018.04.015" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.fuel.2018.04.01510.1016/j.fuel.2018.04.015</a>
  2. Aissaoui, A., 1983. Etude théorique et expérimentale de l’hystérésis des pressions capillaires et des perméabilités relatives en vue du stockage souterrain de gaz. Ecole des Mines de Paris, Paris.
  3. Alyafei, N., 2015. Capillary trapping and oil recovery in altered-wettability carbonate rock. PhD thesis. Dept. of Earth Science and Engineering, Imperial College London.
  4. Blunt, M., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Pentland, C., 2013. Pore-scale imaging and modelling. Adv. Water Resour., 51, 197–216. DOI: <a href="https://doi.org/10.1016/j.advwatres.2012.03.00310.1016/j.advwatres.2012.03.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.advwatres.2012.03.00310.1016/j.advwatres.2012.03.003</a>
  5. Bona, N., Garofoli, L., Radaelli, F., 2014. Trapped gas saturation measurements: New perpectives. SPE Annual Technical Conference and Exhibition, Amsterdam, The Netherlands, SPE- 170765-MS. <a href="https://doi.org/10.2118/170765-MS10.2118/170765-MS" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2118/170765-MS10.2118/170765-MS</a>
  6. Element, D., Master, J., Sargent, N., Jayasekera, A., Goodyear, S., 2003. Assesment of three-phase relative permeability models using laboratory hysteresis data. SPE Int. Improved Oil Recovery Conf. in Asia Pacific, Kuala Lumpur, Malaysia, SPE-84903-MS. <a href="https://doi.org/10.2118/84903-MS10.2118/84903-MS" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2118/84903-MS10.2118/84903-MS</a>
  7. Fatemi, S.M., Sohrabi, M., 2013. Experimental and theoretical investigation of oil and gas trapping under two- and three-phase flow including water alternating gas (WAG) injection. SPE Annual Techn. Conf. and Exhibition, New Orleans, Louisiana, USA, SPE-166193-MS. <a href="https://doi.org/10.2118/166193-MS10.2118/166193-MS" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2118/166193-MS10.2118/166193-MS</a>
  8. Faybishenko, B.A., 1995. Hydraulic behavior of quasi-saturated soils in the presence of entrapped air: Laboratory experiments. Water Resour. Res., 31, 2421–2435. <a href="https://doi.org/10.1029/95WR0165410.1029/95WR01654" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1029/95WR0165410.1029/95WR01654</a>
  9. Fayer, M.J., Hillel, D., 1986. Air encapsulation: II. Profile water storage and shallow water table fluctuations. Soil Sci. Soc. Am. J., 50, 572–577. <a href="https://doi.org/10.2136/sssaj1986.0361599500" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2136/sssaj1986.0361599500</a> 5000030006x10.2136/sssaj1986.03615995005000030006x
  10. Fleury, M., Romero-Sarmiento, M.. 2016. Characterization of shales using T1–T2 NMR maps. J. Petrol. Sci. Eng., 137, 55–62. <a href="https://doi.org/10.1016/j.petrol.2015.11.00610.1016/j.petrol.2015.11.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.petrol.2015.11.00610.1016/j.petrol.2015.11.006</a>
  11. Ge, X., Myers, M.T., Liu, J., Fan, Y., Zaid, M.A., Zhao, J., Hathon, L., 2021. Determining the transverse surfave relaxivity of reservoir rocks: A critical review and perspective. Marine and Pet. Geol., 126. <a href="https://doi.org/10.1016/j.marpetgeo." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.marpetgeo.</a> 2021.10493410.1016/j.marpetgeo.2021.104934
  12. Godoy, W., Pontedeiro, E.M., Hoerlle, F., Raoof, A., van Genuchten, M.Th., Santiago, J., Couto, P., 2019. Computational and experimental pore-scale studies of a carbonate rock sample. J. Hydrol. Hydromech., 67, 4, 372–383. http://dx.doi.org/<a href="https://doi.org/10.2478/johh-2019-000910.2478/johh-2019-0009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/johh-2019-000910.2478/johh-2019-0009</a>
  13. Gonçalves, R.D., Teramoto, E.H., Engelbrecht, B.Z, Soto, M.A., Chang, H.K van Genuchten, M.Th., 2019. Quasi-saturated layer: Implications for estimating recharge and groundwater modeling. Groundwater, 58, 3, 432–440. <a href="https://doi.org/10.1111/gwat.1291610.1111/gwat.12916731815931187874" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/gwat.1291610.1111/gwat.12916731815931187874</a>
  14. Gyllensten, A., Al-Hammadi, M. I., Abousrafa, E., Boyd, A., Ramamoorthy, R., Neumann, S., Neville, T.J., 2008. A new workflow for comprehensive petrophysical characterization of carbonate reservoirs drilled with water-base muds. Abu Dhabi Int. Petrol. Exhibition and Conf., Abu Dhabi, UAE, SPE-118380-MS. <a href="https://doi.org/10.2118/118380-MS10.2118/118380-MS" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2118/118380-MS10.2118/118380-MS</a>
  15. Hamon, G., Suzanne, K., Billiote, J., Trocme, V., 2001. Field-wide variations of trapped gas saturation in heterogeneous sandstone. SPE Annual Techn. Conf. and Exhibition, New Orleans, Louisiana, SPE-71524-MS. <a href="https://doi.org/10.2118/71524-MS10.2118/71524-MS" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2118/71524-MS10.2118/71524-MS</a>
  16. Herlinger, R.J., Zambonatto, E.E., de Ros, L.F., 2017. Infuence of diagenesis on the quality of lower Cretaceous Pre-Salt Lacustrine carbonate reservoirs from Northern Campos Basin, offshore Brazil. J. Sedim. Res., 87, 12, 1285–1313. <a href="https://doi.org/10.2110/jsr.2017.7010.2110/jsr.2017.70" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2110/jsr.2017.7010.2110/jsr.2017.70</a>
  17. Jerauld, G.R., 1997. Prudhoe Bay gas/oil relative permeability. SPE Res. Eng., 12, SPE-35718-PA, 66–73. <a href="https://doi.org/10.2118/35718-PA10.2118/35718-PA" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2118/35718-PA10.2118/35718-PA</a>
  18. Kazemi, F., Azin, R., Osfouri, S., 2020. Evaluation of phase trapping models in gas-condensate systems in an unconsolidated sand pack. J. Petrol. Sci. Eng., 195, 107848. <a href="https://doi.org/10.1016/j.petrol.2020.10784810.1016/j.petrol.2020.107848" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.petrol.2020.10784810.1016/j.petrol.2020.107848</a>
  19. Khisamov, R.S., Bazarevskaya, V.G., Burkhanova, I.O., Kuzmin, V.A., Bolshakov, M.N., Marutyan, O.O.. 2020. Influence of the pore space structure and wettability on residual gas saturation. Georesour., 22, 2, 2–7. DOI:<a href="https://doi.org/10.18599/grs.2020.2.2-710.18599/grs.2020.2.2-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.18599/grs.2020.2.2-710.18599/grs.2020.2.2-7</a>
  20. Krevor, S., Blunt, M.J., Benson, S.M., Pentland, C.H., Reynolds, C., Al-Menhali, A., Niu, B., 2015. Capillary trapping for geologic carbon dioxide storage – From pore scale physics to field scale implications. Int. J. Greenh. Gas Control, 40, 221–237. <a href="https://doi.org/10.1016/j.ijggc.2015.04.00610.1016/j.ijggc.2015.04.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijggc.2015.04.00610.1016/j.ijggc.2015.04.006</a>
  21. Lai, J., Wang, G., Wang, Z., Chen, J., Pang, X., Wang, S., Fan, X., 2018. A review on pore structure characterization in tight sandstones. Earth Sci. Rev., 117, 436–457. <a href="https://doi.org/10.1016/j.earscirev.2017.12.00310.1016/j.earscirev.2017.12.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.earscirev.2017.12.00310.1016/j.earscirev.2017.12.003</a>
  22. Li, W., Lu, S., Xue, H., Zhang, P., Hu, Y., 2016. Microscopic pore structure in shale reservoir in the argillaceous dolomite from the Jianghan Basin. Fuel, 181, 1041–1049. <a href="https://doi.org/10.1016/j.fuel.2016.04.14010.1016/j.fuel.2016.04.140" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.fuel.2016.04.14010.1016/j.fuel.2016.04.140</a>
  23. Lima, M.C., Pontedeiro, E.M., Ramirez, M.G., Favoreto, J., Santos, H.N., van Genuchten, M.Th., Raoof, A., 2022. Impacts of mineralogy on petrophysical properties. Transp. Porous Media, 145, 103–125. <a href="https://doi.org/10.1007/s11242-022-01829-w10.1007/s11242-022-01829-w" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11242-022-01829-w10.1007/s11242-022-01829-w</a>
  24. Lima, M.C., Pontedeiro, E.M., Ramirez, M., Boyd, A., van Genuchten, M.Th., Borghi, L., Raoof, A., 2020. Petrophysical correlations for the permeability of coquinas (carbonate rocks). Transp. Porous Media, 135, 287–308. <a href="https://doi.org/10.1007/s11242-020-01474-110.1007/s11242-020-01474-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11242-020-01474-110.1007/s11242-020-01474-1</a>
  25. Meiboom, S., Gill, D., 1958. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum., 29, 688. <a href="https://doi.org/10.1063/1.171629610.1063/1.1716296" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1063/1.171629610.1063/1.1716296</a>
  26. Mohammadian, S., Geistlinger, H., Vogel, H.-J., 2015. Quantification of gas-phase trapping within the capillary fringe using computed microtomography. Vadose Zone J., 14, 1–9. <a href="https://doi.org/10.2136/vzj2014.06.006310.2136/vzj2014.06.0063" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2136/vzj2014.06.006310.2136/vzj2014.06.0063</a>
  27. Ni, H., Boon, M., Garing, C., Benson, S.M., 2019. Prediction CO2 resudual trapping ability based on experimental petrophysical properties for different sandstone types. Int. J. Greenh. Gas Control, 86, 158–176. <a href="https://doi.org/10.1016/j.ijggc.2019." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijggc.2019.</a> 04.02410.1016/j.ijggc.2019.04.024
  28. Otsuki, B., Takemoto, M., Fujibayashi, S., Neo, M., Kokubo, T., Nakamura, T., 2006. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: Three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials, 27, 892–900. DOI: <a href="https://doi.org/10.1016/j.biomaterials.2006.08.01310.1016/j.biomaterials.2006.08.01316945409" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.biomaterials.2006.08.01310.1016/j.biomaterials.2006.08.01316945409</a>
  29. Raeini, A.Q., Bijeljic, B., Blunt, M.J., 2015. Modelling capillary trapping using finite volume simulation of two-phase flow directly on micro-CT images. Adv. Water Resour., 83, 102–110. <a href="https://doi.org/10.1016/j.advwatres.2015.05.00810.1016/j.advwatres.2015.05.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.advwatres.2015.05.00810.1016/j.advwatres.2015.05.008</a>
  30. Raoof, A., Nick, H.M., Hassanizadeh, S.M., Spiers, C.J., 2013. Poreflow: A complex pore-network model for simulation of reactive transport in variably saturated porous media. Comp. Geosci., 61, 160–174. <a href="https://doi.org/10.1016/j.cageo.2013.08.00510.1016/j.cageo.2013.08.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cageo.2013.08.00510.1016/j.cageo.2013.08.005</a>
  31. Ruspini, L.C., Farokhpoor, R., Oren, P.E., 2017. Pore-scale modeling of capillary trapping in water-wet porous media: A new cooperative pore-body filling model. Adv. Water Resour., 108, 1–14. <a href="https://doi.org/10.1016/j.advwatres.2017.07.00810.1016/j.advwatres.2017.07.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.advwatres.2017.07.00810.1016/j.advwatres.2017.07.008</a>
  32. Sahimi, M., 2012. Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches. Wiley, Germany. DOI: <a href="https://doi.org/10.1002/9783527636693" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/9783527636693</a>
  33. Shao, X., Pang, X., Li, L., Zheng, D., 2017. Fractal analysis of pore network in tight gas sandstones using NMR method: A case study from the Ordos Basin, China. Energy Fuels, 31, 10, 10358–10368. <a href="https://doi.org/10.1021/acs.energyfuels.7b0100710.1021/acs.energyfuels.7b01007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/acs.energyfuels.7b0100710.1021/acs.energyfuels.7b01007</a>
  34. Silva, P.N., Gonçalvez, E.C., Rios, E.H., Muhammad, A., Moss, A., Pritchard, T., Azeredo, R.B., 2015. Automatic classification of carbonate rocks permeability from 1H NMR relaxation data. Expert Systems Appl., 9, 9, 4299–4309. https://doi.org/10. 1016/j.eswa.2015.01.03410.1016/j.eswa.2015.01.034
  35. Silveira, T.M., Hoerlle, F., Rocha, A.S., Lima, M.C., Ramirez, M.G., Pontedeiro, E.M., van Genuchten, M.Th., Couto, P., 2022. Effects of carbonated water injection on the pore system of a carbonate rock (coquina). J. Hydrol. Hydromech., 70, 2, 257–268. DOI: <a href="https://doi.org/10.2478/johh-2022-000110.2478/johh-2022-0001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/johh-2022-000110.2478/johh-2022-0001</a>
  36. Souza, A.A., 2012. Estudo de Propriedades Petrofísicas de Rochas Sedimentares por Ressonância Magnética. PhD thesis, Materials Science and Engineering, São Paulo University, 207p.
  37. Sun, H., Vega, S., Tao, G., 2017. Analysis of heterogeneity and permeability anisotropy in carbonate rock samples using digital rock physics. J. Petr. Sci. Eng., 156, 419–429. <a href="https://doi.org/10.1016/j.petrol.2017.06.00210.1016/j.petrol.2017.06.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.petrol.2017.06.00210.1016/j.petrol.2017.06.002</a>
  38. Suzanne, K., Billiote, J., 2004. Influence de la microporosité sur le piégeage du gaz dans un milieu poreaux naturel. Comptes Rendus Geosci., 336, 12, 1071–1078. <a href="https://doi.org/10.1016/j.crte.2004.04.01010.1016/j.crte.2004.04.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.crte.2004.04.01010.1016/j.crte.2004.04.010</a>
  39. Suzanne, K., Hamon, G., Billiotte, J., Trocme, V., 2003. Experimental relationships between residual gas saturation and initial gas saturation in heterogeneous sandstone reservoirs. SPE Annual Techn. Conf. and Exhibition, Denver, Colorado, SPE-84038-MS. <a href="https://doi.org/10.2118/84038-MS10.2118/84038-MS" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2118/84038-MS10.2118/84038-MS</a>
  40. Tanino, Y., Blunt, M., 2013. Laboratory investigation of capillary trapping under mixed-wet conditions. Water Resour. Res., 49, 7, 4311–4319. <a href="https://doi.org/10.1002/wrcr.2034410.1002/wrcr.20344" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/wrcr.2034410.1002/wrcr.20344</a>
  41. Tanino, Y., Blunt, M., 2012. Capillary trapping in sandstone and carbonates: Dependence on pore structure. Water Resour. Res., 48, 8525. DOI: <a href="https://doi.org/10.1029/2011WR01171210.1029/2011WR011712" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1029/2011WR01171210.1029/2011WR011712</a>
  42. Trevizan, W., Netto, P., Coutinho, B., Machado, V.F., Rios, E.H., Chen, S., Romero, P., 2014. Method for predicting permeability of complex carbonate reservoirs using NMR logging measurements. Petrophys., 55, 03, SPWLA-2014-v55n3a4, 240–252.
  43. Washburn, E.W., 1921. Note on a method of determining the distribution of pore sizes in a porous material. Proc. Nat. Acad. Sci. USA, 7, 115–116. DOI: <a href="https://doi.org/10.1073/pnas.7.4.115108476416576588" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1073/pnas.7.4.115108476416576588</a>
  44. Wang, S., Tokunaga, T.K., Wan, J., Dong, W., Kim, Y,, 2016. Capillary pressure-saturation relations in quartz and carbonate sands: Limitations for correlating capillary and wettability influences on air, oil, and supercritical CO2 trapping. Water Resour. Res., 52, 6671–6690. DOI: <a href="https://doi.org/10.1002/2016WR018816" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/2016WR018816</a>
  45. Wildenschild, D., Sheppard, A.P., 2013. X-Ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour., 51, 217–246. <a href="https://doi.org/10.1016/j.advwatres.2012.07.01810.1016/j.advwatres.2012.07.018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.advwatres.2012.07.01810.1016/j.advwatres.2012.07.018</a>
  46. Yuan, Y., Rezaee, R., 2019. Comparative porosity and pore structure assessment in shales: Measurement techniques, infuencing factors and implications for reservoir characterization. Energies, 12, 2094. <a href="https://doi.org/10.3390/en1211209410.3390/en12112094" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en1211209410.3390/en12112094</a>
DOI: https://doi.org/10.2478/johh-2022-0042 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 11 - 21
Submitted on: Oct 22, 2022
Accepted on: Dec 30, 2022
Published on: Feb 4, 2023
Published by: Slovak Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Caroline H. Dias, Felipe M. Eler, Carlos Cordeiro, Mateus G. Ramirez, José A. Soares, Denise Nunes, Maira C.O. Lima, Paulo Couto, published by Slovak Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.