Have a personal or library account? Click to login
Discharge coefficient, effective head and limit head in the Kindsvater-Shen formula for small discharges measured by thin-plate weirs with a triangular notch Cover

Discharge coefficient, effective head and limit head in the Kindsvater-Shen formula for small discharges measured by thin-plate weirs with a triangular notch

Open Access
|Feb 2023

References

  1. Adeyemi, O.I., Oreko, B.U., Abam, J., 2017. Experimental determination of the effect of notch shape on weir flow characteristics using constant head discharge apparatus. Asian J. Curr. Res., 2, 2, 55–64.
  2. Ali, A.A.M, Ibrahim, M., Diwedar, A.I., 2015. The discharge coefficient for a compound sharp crested V-notch weir. Asian J. Eng. Technol., 3, 5, 494–501.<a href="https://doi.org/10.1016/j.aej.2015.03.026" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.aej.2015.03.026</a>
  3. Allerton, R.W., 1932. Flow of water over triangular weirs. Thesis. Princeton University, Princeton.
  4. Barr, J., 1910. Experiments upon the flow of water over triangular notches. Engineering, 89, 435–437, 470–473.
  5. Barrett, F.B., 1931. The flow of water over triangular weirs. Thesis. Princeton University, Princeton.
  6. Barrett, J.M., 1924. A study of the flow of water over triangular weirs and the determination of coefficients of discharge for small heads. Thesis. Utah Agricultural College, Logan.
  7. Bautista-Capetillo, C., Robles, O., Júnez-Ferreira, H., Playán, E., 2013. Discharge coefficient analysis for triangular sharp-crested weirs using low-speed photographic technique. J. Irrig. Drain. Eng. - ASCE, 140, 3, 06013005.<a href="https://doi.org/10.1061/(ASCE)IR.1943-4774.0000683" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1061/(ASCE)IR.1943-4774.0000683</a>
  8. Bos, M.G., 1989. Discharge measurement structures. 3. ILRI. Caroline, L.L., Afshar, N.R., 2014. Effect of types of weir on discharge. J. Civ. Eng. Sci. Technol., 5, 2, 35–40. <a href="https://doi.org/10.33736/jcest.137.201410.33736/jcest.137.2014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.33736/jcest.137.201410.33736/jcest.137.2014</a>
  9. Cone, V.M., 1916. Flow through weir notches with thin edges and full contractions. J. Agric. Res., 5, 23, 1051–1113.
  10. Cone, V.M., 1917. Construction and use of farm weirs. Farmers’ Bulletin, 813, 1–18.
  11. Cozzens, H.A., 1915. Flow over V-notch weirs. Power, 42, 21, 714.
  12. Cuttle, S.P., Mason, D.J., 1988. A flow-proportional water sampler for use in conjunction with a V-notch weir in small catchment studies. Agr. Water Manage., 13, 93–99. <a href="https://doi.org/10.1016/0378-3774(88)90135-710.1016/0378-3774(88)90135-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/0378-3774(88)90135-710.1016/0378-3774(88)90135-7</a>
  13. Eli, R.N., 1986. V-notch weir calibration using new parameters. J. Hydraul. Eng. - ASCE, 112, 4, 321–325. <a href="https://doi.org/10.1061/(ASCE)0733-9429(1986)112:4(321)10.1061/(ASCE)0733-9429(1986)112:4(321)" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1061/(ASCE)0733-9429(1986)112:4(321)10.1061/(ASCE)0733-9429(1986)112:4(321)</a>
  14. Ghodsian, M., 2004. Stage discharge relationships for triangular weir. Int. J. Civ. Eng., 2, 1, 1–7.
  15. Greve, F.W., 1930. Calibration of 16 triangular weirs at Prude. Eng. News-Rec., 105, 5, 166–167.
  16. Greve, F.W., 1932. Flow of water through circular, parabolic, and triangular vertical notch-weirs. Eng. Bulletin Purdue University, 40, 2–84.
  17. Greve, F.W., 1945. Flow of liquids through vertical circular orifices and triangular weirs. Eng. Bull. Purdue University, 29, 3, 1–68.
  18. Grossi, P., 1961. Su uno stramazzo triangolare in parete sottile, libero, con angolo al vertice molto piccolo (On a thin-plated, free triangular weir with a very small vertex angle). L’Acqua, 4, 99–100. (In Italian.)
  19. Hattab, M.H., Mijic, A.M., Vernon, D., 2019. Optimised triangular weir design for assessing the full-scale performance of green infrastructure. Water, 4, 11, 773–790. <a href="https://doi.org/10.3390/w1104077310.3390/w11040773" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/w1104077310.3390/w11040773</a>
  20. Hertzler, R.A., 1938. Determination of a formula for the 120-deg V-notch weir. Civil. Eng., 8, 11, 756–757.
  21. Chanson, H., Wang, H., 2012. Unsteady discharge calibration of a large V-notch weir: REPORT No. CH88/12. 1. The University of Queensland, Brisbane, 282355720.<a href="https://doi.org/10.14264/uql.2016.585" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.14264/uql.2016.585</a>
  22. Chanson, H., Wang, H., 2013. Unsteady discharge calibration of a large V-notch weir. Flow Meas. Instrum., 29, 19–24. <a href="https://doi.org/10.1016/j.flowmeasinst.2012.10.01010.1016/j.flowmeasinst.2012.10.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.flowmeasinst.2012.10.01010.1016/j.flowmeasinst.2012.10.010</a>
  23. ISO 1438, 2017. Hydrometry – Open channel flow measurement using thin-plate weirs. 3. ISO, Geneva.
  24. Itaya, S., Takenaka, T., 1955. Measurement of oil flow by means of 60° sharp-edged triangular weir. Trans. Jpn. Soc. Mech. Eng., 21, 101, 94–96. (In Japanese.) <a href="https://doi.org/10.1299/kikai1938.21.9410.1299/kikai1938.21.94" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1299/kikai1938.21.9410.1299/kikai1938.21.94</a>
  25. JCGM 100, 2008. Evaluation of measurement data — Guide to the expression of uncertainty in measurement. 1. BIPM.
  26. Ji, K., 2007. Discharge characteristics of V-shaped multi-slit weirs. Thesis. Concordia University, Montreal.
  27. King, H.W., 1916. Flow of water over right-angled V-notch weir. The Michigan Technic, 29, 3, 189–195.
  28. Lenz, A.T., 1942. Viscosity and surface tension effects on V-notch weir coefficients. Trans. Am. Soc. Civ. Eng., 351–374.
  29. Martikno, R., Humaedi, M., Ashat, A., Situmorang, J., Novianto, Hadi, J., 2013. Evaluation of weirs calculation to estimate well capacity: a numerical study. In: Proc. 13th Indonesia International GEOTHERMAL Convention & Exhibition 2013. Jakarta. 332060750
  30. Martínez, J., Reca, J., Morillas, M.T., López, J.G., 2005. Design and calibration of a compound sharp-crested weir. J. Hydraul. Eng. -ASCE., 131, 2, 112–116. <a href="https://doi.org/10.1061/(ASCE)0733-9429(2005)131:2(112)10.1061/(ASCE)0733-9429(2005)131:2(112)" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1061/(ASCE)0733-9429(2005)131:2(112)10.1061/(ASCE)0733-9429(2005)131:2(112)</a>
  31. Mawson, H., 1927. Applications of the principles of dimensional and dynamical similarity to the flow of liquids through orifices, notches and weirs. Proc. Inst. Mech. Eng., 112, 537–547.<a href="https://doi.org/10.1243/PIME_PROC_1927_112_022_02" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1243/PIME_PROC_1927_112_022_02</a>
  32. Milburn, P., Burney, J., 1988. V-notch weir boxes for measurement of subsurface drainage system discharges. Can. Agr. Eng., 30, 2, 209–212.
  33. Numachi, F., Hutizawa, S., 1941a. On the overflow coefficient of a right-angled triangular weir) (2. Notice). J. Soc. Mech. Eng., 44, 286, 286. (In Japanese.) <a href="https://doi.org/10.1299/jsmemag.44.286_5_110.1299/jsmemag.44.286_5_1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1299/jsmemag.44.286_5_110.1299/jsmemag.44.286_5_1</a>
  34. Numachi, F., Hutizawa, S., 1941b. On the overflow coefficient of a right-angled triangular weir (2. Notice). Trans. Jpn. Soc. Mech. Eng.,7, 27–3, 5–9. (In Japanese.) <a href="https://doi.org/10.1299/kikai1938.7.27-3_510.1299/kikai1938.7.27-3_5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1299/kikai1938.7.27-3_510.1299/kikai1938.7.27-3_5</a>
  35. Numachi, F., Hutizawa, S., 1942a. On the overflow coefficient of a right-angled triangular weir (3. Notice). J. Soc. Mech. Eng., 45, 308, 725. (In Japanese.) <a href="https://doi.org/10.1299/jsmemag.45.308_725_210.1299/jsmemag.45.308_725_2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1299/jsmemag.45.308_725_210.1299/jsmemag.45.308_725_2</a>
  36. Numachi, F., Hutizawa, S., 1942b. On the overflow coefficient of a right-angled triangular weir (3. Notice). Trans. Jpn. Soc. Mech. Eng., 8, 33–3, 37–40. (In Japanese.) <a href="https://doi.org/10.1299/kikai1938.8.33-3_3710.1299/kikai1938.8.33-3_37" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1299/kikai1938.8.33-3_3710.1299/kikai1938.8.33-3_37</a>
  37. Numachi, F., Kurokawa, T., Hutizawa, S., 1940a. On the overflow coefficient of a right-angled triangular weir. J. Soc. Mech. Eng., 43, 275, 45. (In Japanese.) <a href="https://doi.org/10.1299/jsmemag.43.275_45_210.1299/jsmemag.43.275_45_2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1299/jsmemag.43.275_45_210.1299/jsmemag.43.275_45_2</a>
  38. Numachi, F., Kurokawa, T., Hutizawa, S., 1940b. On the overflow coefficient of a right-angled triangular weir). Trans. Jpn. Soc. Mech. Eng., 6, 22–3, 10–14. (In Japanese.) <a href="https://doi.org/10.1299/kikai1938.6.22-3_1010.1299/kikai1938.6.22-3_10" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1299/kikai1938.6.22-3_1010.1299/kikai1938.6.22-3_10</a>
  39. Numachi, F., Kurokawa, T., Tota, E., 1937. Influence of the surface of the weir edge of a right-angled triangular weir, which projected discontinuously upstream due to the creation of an overlap, on the flow coefficient. Trans. Am. Soc. Mech. Eng., 3, 11, 174–176. (In Japanese.) <a href="https://doi.org/10.1299/kikai1935.3.11_17410.1299/kikai1935.3.11_174" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1299/kikai1935.3.11_17410.1299/kikai1935.3.11_174</a>
  40. Numachi, F., Saito, I., 1948. On allowable shortest length of channel for triangular notch. J. Soc. Mech. Eng., 51, 357, 229–230. (In Japanese.) <a href="https://doi.org/10.1299/jsmemag.51.357_229_210.1299/jsmemag.51.357_229_2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1299/jsmemag.51.357_229_210.1299/jsmemag.51.357_229_2</a>
  41. Numachi, F., Saito, I., 1951. On allowable shortest length of channel for triangular notch. Trans. Jpn. Soc. Mech. Eng., 17, 56, 1–3. (In Japanese.) <a href="https://doi.org/10.1299/kikai1938.17.110.1299/kikai1938.17.1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1299/kikai1938.17.110.1299/kikai1938.17.1</a>
  42. O’Brien, M.P., 1927. Least error in V-notch weir measurements when angle is 90 degrees. Eng. News-Rec., 98, 25, 1030.
  43. Piratheepan, M., Winston, N.E.F., Pathirana, K.P.P., 2007. Discharge measurements in open channels using compound sharp-crested weirs. J. Inst. Eng., 40, 3, 31–38. <a href="https://doi.org/10.4038/engineer.v40i3.714410.4038/engineer.v40i3.7144" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4038/engineer.v40i3.714410.4038/engineer.v40i3.7144</a>
  44. Pospíšilík, Š., 2020. 2.67° triangular-notch thin-plate weir. In: Juniorstav 2020. ECON Publishing, Brno, pp. 598–603. (In Czech.). https://juniorstav.fce.vutbr.cz/download
  45. Pospíšilík, Š., 2021. Identification and quantification of uncertainties in the measurement and evaluation of the discharge coefficient of triangular-notch thin-plate weir. In: Juniorstav 2021. ECON Publishing, Brno, pp. 512–517. (In Czech.). https://juniorstav.fce.vutbr.cz/download
  46. Pospíšilík, Š., 2022. Analysis of the exploration range of triangular–notch thin–plate weirs. In: Juniorstav 2022. 1. ECON Publishing, Brno, pp. 468–474. (In Czech.). https://juniorstav.fce.vutbr.cz/download
  47. Pospíšilík, Š., Zachoval, Z., Pařílková, J., 2022. Characteristics of velocity field in short flume in front of triangular-notch thin-plate weir. In: Proc. 34th Symposium on Anemometry. Institute of Hydrodynamics CAS, Prague, pp. 40–49. (In Czech.)
  48. Ramamurthy, A.S., Kai, J., Han, S.S., 2013. V-shaped multislit weirs. J. Irrig. Drain. Eng. - ASCE, 139, 7, 582–585. <a href="https://doi.org/10.1061/(ASCE)IR.1943-4774.000057410.1061/(ASCE)IR.1943-4774.0000574" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1061/(ASCE)IR.1943-4774.000057410.1061/(ASCE)IR.1943-4774.0000574</a>
  49. Reddy, M.S., Reddy, Y.R., 2017. Experimental investigation on the influence of density of fluid on efficiency of V-notch. Int. J. Adv. Sci. Res. Eng., 3, 9, 35–41. <a href="https://doi.org/10.7324/%20IJASRE.2017.32515" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.7324/%20IJASRE.2017.32515</a>
  50. Schlag, A., 1962. Note on flow measurement for triangular weir. La Tribune de Cebedeau. Liege, 15, 218, 22–24. (In French.)
  51. Schoder, E.W., Turner, K. B., 1929. Precise weir measurements. Trans. Am. Soc. Civ. Eng., 1929, 93, 999–1190.<a href="https://doi.org/10.1061/TACEAT.0004066" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1061/TACEAT.0004066</a>
  52. Shen, J., 1981. Discharge characteristics of triangular-notch thin-plate weirs: Studies of flow of water over weirs and dams. Geological survey water-supply paper, 1617-B. U. S. Government Printing Office, Washington.
  53. Smith, E.S., 1934. The V-notch: Weir for hot water. American Society of Mechanical Engineers, 56, 9, 787–789.<a href="https://doi.org/10.1115/1.4019865" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1115/1.4019865</a>
  54. Smith, E.S., 1935. The V-notch weir for hot water. Trans. Am. Soc. Mech. Eng., 57, 249–250.<a href="https://doi.org/10.1115/1.4019977" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1115/1.4019977</a>
  55. Strickland, T.P., 1910. Mr. James Barr’s experiments upon the flow of water over triangular notches. Engineering, 90, 598.
  56. Switzer, F.G., 1915. Test of the effect of temperature on weir coefficients. Engineering News, 73, 13, 636–637.
  57. Thomson, J., 1858. On experiments on the measurement of water by triangular notches in weir boards. In: Proc. Twenty-eight Meeting of the British Association for the Advancement of Science. John Murray, Albemarle street, London, pp. 181–185.
  58. Thomson, J., 1861. On experiments on the gauging of water by triangular notches. In: Proc. Thirty-first Meeting of the British Association for the Advancement of Science. John Murray, Albemarle street, London, pp. 151–158.
  59. Thornton, B.M., 1929. Measurement of fluid flow with triangular notches. Power Engineer, 24, 313–315.
  60. Vatankhah, A.R., Khamisabadi, M., 2019. Stage-discharge relationship for triangular and curved-edge triangular weirs. Flow. Meas. Instrum., 69, 1–10. <a href="https://doi.org/10.1016/j.flow-measinst.2019.10160910.1016/j.flowmeasinst.2019.101609" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.flow-measinst.2019.10160910.1016/j.flowmeasinst.2019.101609</a>
  61. Vicena, D., 2020. Minimum head of triangular-notch thin-plate weir. Thesis. BUT, Brno. (In Czech.)
  62. Viparelli, M., 1947. On the Thompson weir. In: Estratto da Atti Fondazione Politecnica del Mezzogiorno, 3, pp. 1–24. (In Italian.)
  63. Wirak, L.R., 1934. An investigation of the flow of water over triangular weirs of different angles. Thesis. Princeton University, Princeton.
  64. Yarnall, D.R., 1912. The V-notch weir method of measurement. J. Am. Soc. Mech. Eng., 34, 2, 1479–1494.
  65. Yarnall, D.R., 1927. Accuracy of the V-notch-weir method of measurement. Trans. Am. Soc. Mech. Eng., 48, 939–964.
DOI: https://doi.org/10.2478/johh-2022-0040 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 35 - 48
Submitted on: Oct 3, 2022
Accepted on: Dec 13, 2022
Published on: Feb 4, 2023
Published by: Slovak Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Šimon Pospíšilík, Zbyněk Zachoval, published by Slovak Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.