Have a personal or library account? Click to login
Hydrologic recovery after wildfire: A framework of approaches, metrics, criteria, trajectories, and timescales Cover

Hydrologic recovery after wildfire: A framework of approaches, metrics, criteria, trajectories, and timescales

Open Access
|Nov 2022

References

  1. Andreu, V., Imeson, A.C., Rubio, J.L., 2001. Temporal changes in soil aggregates and water erosion after a wildfire in a Mediterranean pine forest. Catena, 44, 1, 69–84.10.1016/S0341-8162(00)00177-6
  2. Archibald, S., Lehmann, C.E., Gómez-Dans, J.L., Bradstock, R.A., 2013. Defining pyromes and global syndromes of fire regimes. Proceedings of the National Academy of Sciences, 110, 16, 6442–6447.10.1073/pnas.1211466110363163123559374
  3. Aronica, G., Candela, A., Santoro, M., 2002. Changes in the hydrological response of two Sicilian basins affected by fire. In: Proceedings of the Fourth International FRIEND Conference – Regional Hydrology, Bridging the Gap Between Research and Practice. International Association of Hydrological Sciences, Cape Town, South Africa, pp. 163–169.
  4. Badik, K.J., Wilson, C., Kampf, S.K., Saito, L., Provencher, L., Byer, S., Hazelwood, M., 2022. A novel approach to estimating soil yield risk in fire prone ecosystems. Forest Ecology and Management, 505, 119887.10.1016/j.foreco.2021.119887
  5. Barroso, P.M., Vaverková, M.D., 2020. Fire effects on soils – A pilot scale study on the soils affected by wildfires in the Czech Republic. Journal of Ecological Engineering, 21, 6, 248–256.10.12911/22998993/123471
  6. Barroso, P.M., Vaverková, M.D., Elbl, J., 2021. Assessing the ecotoxicity of soil affected by wildfire. Environments, 8, 1, 3.10.3390/environments8010003
  7. Bart, R., Hope, A., 2010. Streamflow response to fire in large catchments of a Mediterranean-climate region using pairedcatchment experiments. Journal of Hydrology, 388, 3–4, 370–378. DOI: https://doi.org/10.1016/j.jhydrol.2010.05.01610.1016/j.jhydrol.2010.05.016
  8. Beyene, M.T., Leibowitz, S.G., Pennino, M.J., 2021. Parsing weather variability and wildfire effects on the post-fire changes in daily stream flows: A quantile-based statistical approach and its application.. Water Resources Research, 57, 10, e2020WR028029.10.1029/2020WR028029
  9. Bodí, M.B., Martin, D.A., Balfour, V.N., Santín, C., Doerr, S.H., Pereira, P., Cerdà, A., Mataix-Solera, J., 2014. Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth-Science Reviews, 130, 103–127.10.1016/j.earscirev.2013.12.007
  10. Boer, M.M., De Dios, V.R., Stefaniak, E.Z., Bradstock, R.A., 2021. A hydroclimatic model for the distribution of fire on earth. Environmental Research Communications, 3, 3, 035001.10.1088/2515-7620/abec1f
  11. Bolin, S.B., Ward., T.J., 1987. Recovery of a New Mexico drainage basin from a forest fire. In: Swanson, R.H., Bernier, P.Y., Woodard, P.D. (Eds.): Forest Hydrology and Watershed Management. IAHS Publication No. 167. IAHS Press, Wallingford, pp. 191–198.
  12. Brauman, K.A., Daily, G.C., Duarte, T.K., Mooney, H.A., 2007. The nature and value of ecosystem services: an overview highlighting hydrologic services. Annu. Rev. Environ. Resour., 32, 67–98.10.1146/annurev.energy.32.031306.102758
  13. Brown, J.A.H., 1972. Hydrologic effects of a bushfire in a catchment in south-eastern New South Wales. Journal of Hydrology, 15, 77–96.10.1016/0022-1694(72)90077-7
  14. Canfield, H.E., Goodrich, D.C., Burns, I.S., 2005. Selection of parameter values to model post-fire runoff and sediment transport at the watershed scale in southwestern forests. In: Proc. ASCE Watershed Manage. Conf., pp. 19–22. DOI: 10.1061/40763(178)48
  15. Cardenas, M.B., Kanarek, M.R., 2014. Soil moisture variation and dynamics across a wildfire burn boundary in a loblolly pine (Pinus taeda) forest. Journal of Hydrology, 519, 490–502.10.1016/j.jhydrol.2014.07.016
  16. Cerdà, A., 1998. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrol. Process., 12, 1031–1042. DOI: 10.1002/(SICI)1099-1085(19980615)12:7<1031::AID-HYP636>3.0.CO;2-V
  17. Cerdá, A., Doerr, S.H., 2005. Influence of vegetation recovery on soil hydrology and erodibility following fire: an 11-year investigation. International Journal of Wildland Fire, 14, 423–437.10.1071/WF05044
  18. Cerdà, A., Doerr, S.H., 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74, 3, 256–263.10.1016/j.catena.2008.03.010
  19. Cerda, A., Imeson, A.C., Calvo, A., 1995. Fire and aspect induced differences on the erodibility and hydrology of soils at La Costera, Valencia, southeast Spain. Catena, 24, 4, 289–304.10.1016/0341-8162(95)00031-2
  20. Cerdà, A., Lasanta, T., 2005. Long-term erosional responses after fire in the Central Spanish Pyrenees: 1. Water and sediment yield. Catena, 60, 1, 59–80.10.1016/j.catena.2004.09.006
  21. Cerdà, A., Lucas-Borja, M.E., Franch-Pardo, I., Úbeda, X., Novara, A., López-Vicente, M., Popović, Z., Pulido, M., 2021. The role of plant species on runoff and soil erosion in a Mediterranean shrubland. Science of the Total Environment, 799, 149218.10.1016/j.scitotenv.2021.149218
  22. Cerdà, A., Robichaud, P.R., 2009. Fire effects on soil infiltration. In: Cerdà, A., Robichaud, P.R. (Eds.): Fire Effects on Soils and Restoration Strategies. Science Publishers, New Hampshire, pp. 81–103.10.1201/9781439843338-c3
  23. Cole, R.P., Bladon, K.D., Wagenbrenner, J.W., Coe, D.B.R., 2020. Hillslope erosion and sediment production after wildfire and post-fire forest management in northern California. Hydrol. Process., 34, 26, 5242–5259. DOI: https://doi.org/10.1002/hyp.1393210.1002/hyp.13932
  24. Collar, N.M., Saxe, S., Rust, A.J., Hogue, T.S., 2021. A CONUS-scale study of wildfire and evapotranspiration: Spatial and temporal response and controlling factors. Journal of Hydrology, 603, 127162.10.1016/j.jhydrol.2021.127162
  25. Conedera, M., Peter, L., Marxer, P., Forster, F., Rickenmann, D., Re, L., 2003. Consequences of forest fires on the hydrogeological response of mountain catchments: a case study of the Riale Buffaga, Ticino, Switzerland. Earth Surface Processes and Landforms, 28, 2, 117–129. DOI: 10.1002/esp.425
  26. Cosandey, C., Andréassian, V., Martin, C., Didon-Lescot, J.F., Lavabre, J., Folton, N., Mathys, N., Richard, D., 2005. The hydrological impact of the Mediterranean forest: a review of French research. J. Hydrol., 301, 1–4, 235–249. DOI: https://doi.org/10.1016/j.jhydrol.2004.06.04010.1016/j.jhydrol.2004.06.040
  27. De Graff, J.V., 2018. A rationale for effective post-fire debris flow mitigation within forested terrain. Geoenvironmental Disasters, 5, 1, 1–9.10.1186/s40677-018-0099-z
  28. Di Prima, S., Bagarello, V., Angulo-Jaramillo, R., Bautista, I., Cerdà, A., del Campo, A., González-Sanchis, M., Iovino, M., Lassabatere, L., Maetzke, F., 2017. Impacts of thinning of a Mediterranean oak forest on soil properties influencing water infiltration. Journal of Hydrology and Hydromechanics, 65, 3, 276–286.10.1515/johh-2017-0016
  29. Ebel, B.A., 2013a. Simulated unsaturated flow processes after wildfire and interactions with slope aspect. Water Resources Research, 49, 8090–8107. DOI: 10.1002/2013WR014129
  30. Ebel, B.A., 2013b. Wildfire and aspect effects on hydrologic states after the 2010 Fourmile Canyon fire. Vadose Zone Journal, 12, 1. DOI: 10.2136/vzj2012.0089
  31. Ebel, B.A., 2019. Measurement method has a larger impact than spatial scale for plot-scale field-saturated hydraulic conductivity (Kfs) after wildfire and prescribed fire in forests. Earth Surface Processes and Landforms, 44, 1945–1956. DOI: 10.1002/esp.4621
  32. Ebel, B.A., 2020. Temporal evolution of measured and simulated infiltration following wildfire in the Colorado Front Range, USA: Shifting thresholds of runoff generation and hydrologic hazards. Journal of Hydrology, 585, 124765.10.1016/j.jhydrol.2020.124765
  33. Ebel, B.A., 2022. The statistical power of post-fire soil-hydraulic property studies: Are we collecting sufficient infiltration measurements after wildland fires? Journal of Hydrology, 612, 128019.10.1016/j.jhydrol.2022.128019
  34. Ebel, B.A., Martin, D.A., 2017. Meta-analysis of field-saturated hydraulic conductivity recovery following wildland fire: Applications for hydrologic model parameterization and resilience assessment. Hydrological Processes, 31, 21, 3682–3696. DOI: 10.1002/hyp.11288
  35. Ebel, B.A., Hinckley, E.S., Martin, D.A., 2012. Soil-water dynamics and unsaturated storage during snowmelt following wildfire. Hydrology and Earth System Sciences, 16, 1401–1417. DOI: 10.5194/hess-16-1401-2012
  36. Ebel, B.A., Romero, O.C., Martin, D.A., 2018. Thresholds and relations for soil-hydraulic and soil-physical properties as a function of burn severity 4 years after the 2011 Las Conchas Fire, New Mexico, USA. Hydrological Processes, 32, 14, 2263–2278. DOI: 10.1002/hyp.13167
  37. Ebel, B.A., Koch, J.C., Walvoord, M.A., 2019. Soil physical, hydraulic, and thermal properties in interior Alaska, USA: Implications for hydrologic response to thawing permafrost conditions. Water Resources Research, 55, 5, 4427–4447.10.1029/2018WR023673
  38. Ebel, B.A., Moody, J.A., Martin, D.A., 2022. Post-fire temporal trends in soil-physical and-hydraulic properties and simulated runoff generation: Insights from different burn severities in the 2013 Black Forest Fire, CO, USA. Science of the Total Environment, 802, 149847. DOI: https://doi.org/10.1016/j.scitotenv.2021.14984710.1016/j.scitotenv.2021.14984734525722
  39. Ferreira, A., Coelho, C.O.A., Boulet, A.K., Leighton-Boyce, G., Keizer, J.J., Ritsema, C.J., 2005. Influence of burning intensity on water repellency and hydrological processes at forest and shrub sites in Portugal. Australian Journal of Soil Research, 43, 3, 327–336.10.1071/SR04084
  40. Ferreira, A.J.D., Coelho, C.O.A., Walsh, R.P.D., Shakesby, R.A., Ceballos, A., Doerr, S.H., 2000. Hydrological implications of soil water-repellency in Eucalyptus globulus forests, north-central Portugal. Journal of Hydrology, 231–232, 165–177.10.1016/S0022-1694(00)00192-X
  41. Ferreira, R., Serpa, D., Cerqueira, M., Keizer, J., 2016. Shorttime phosphorus losses by overland flow in burnt pine and eucalypt plantations in north-central Portugal: A study at micro-plot scale. Science of the Total Environment, 551, 631–639.10.1016/j.scitotenv.2016.02.03626897406
  42. Flerchinger, G.N., Seyfried, M.S., Hardegree, S.P., 2016. Hydrologic response and recovery to prescribed fire and vegetation removal in a small rangeland catchment. Ecohydrology, 9, 8, 1604–1619.10.1002/eco.1751
  43. Florsheim, J.L., Chin, A., Kinoshita, A.M., Nourbakhshbeidokhti, S., 2017. Effect of storms during drought on post-wildfire recovery of channel sediment dynamics and habitat in the southern California chaparral, USA. Earth Surface Processes and Landforms, 42, 10, 1482–1492. DOI: 10.1002/esp.4117
  44. Francos, M., Pereira, P., Úbeda, X., 2020. Effect of pre-and postwildfire management practices on plant recovery after a wildfire in Northeast Iberian Peninsula. Journal of Forestry Research, 31, 5, 1647–1661.10.1007/s11676-019-00936-7
  45. Gannon, B.M., Wei, Y., MacDonald, L.H., Kampf, S.K., Jones, K.W., Cannon, J.B., Wolk, B.H., Cheng, A.S., Addington, R.N., Thompson, M.P., 2019. Prioritising fuels reduction for water supply protection. International Journal of Wildland Fire, 28, 10, 785–803.10.1071/WF18182
  46. García-Comendador, J., Fortesa, J., Calsamiglia, A., Calvo-Cases, A., Estrany, J., 2017. Post-fire hydrological response and suspended sediment transport of a terraced Mediterranean catchment. Earth Surface Processes and Landforms, 42, 14, 2254–2265.10.1002/esp.4181
  47. García-Orenes, F., Arcenegui, V., Chrenková, K., Mataix- Solera, J., Moltó, J., Jara-Navarro, A.B., Torres, M.P., 2017. Effects of salvage logging on soil properties and vegetation recovery in a fire-affected Mediterranean forest: a two year monitoring research. Science of the Total Environment, 586, 1057–1065.10.1016/j.scitotenv.2017.02.09028214114
  48. Girona-García, A., Vieira, D.C.S., Silva, J., Fernández, C., Robichaud, P.R., Keizer, J.J., 2021. Effectiveness of post-fire soil erosion mitigation treatments: A systematic review and meta-analysis. Earth-Science Reviews, 217, 103611.10.1016/j.earscirev.2021.103611
  49. Gleason, K.E., Nolin, A.W., Roth, T.R., 2013. Charred forests increase snowmelt: Effects of burned woody debris and incoming solar radiation on snow ablation. Geophysical Research Letters, 40, 17, 4654–4661.10.1002/grl.50896
  50. González-Pelayo, O., Andreu, V., Campo, J., Gimeno-García, E., Rubio, J.L., 2006. Hydrological properties of a Mediterranean soil burned with different fire intensities. Catena, 68, 2–3, 186–193. DOI: 10.1016/j.catena.2006.04.006
  51. González-Pérez, J.A., González-Vila, F.J., Almendros, G., Knicker, H., 2004. The effect of fire on soil organic matter - A review. Environment International, 30, 6, 855–870.10.1016/j.envint.2004.02.00315120204
  52. Haines-Young, R., Potschin, M.B., 2018. Common International Classification of Ecosystem Services (CICES) v5.1 and guidance on the application of the revised structure. European Environment Agency, Copenhagen, Denmark.10.3897/oneeco.3.e27108
  53. Haines-Young, R., Potschin-Young, M., 2018. Revision of the common international classification for ecosystem services (CICES V5. 1): a policy brief. One Ecosystem, 3, e27108.10.3897/oneeco.3.e27108
  54. Hallema, D.W., Sun, G., Caldwell, P.V., Norman, S.P., Cohen, E.C., Liu, Y.Q., Bladon, K.D., McNulty, S.G., 2018. Burned forests impact water supplies. Nature Communications, 9, 1307.10.1038/s41467-018-03735-6589357029636465
  55. Halofsky, J.E., Peterson, D.L., Harvey, B.J., 2020. Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecology, 16, 1, 1–26.10.1186/s42408-019-0062-8
  56. Hampton, T.B., Basu, N.B., 2022. A novel Budyko-based approach to quantify post-forest-fire streamflow response and recovery timescales. Journal of Hydrology, 608, 127685.10.1016/j.jhydrol.2022.127685
  57. Harper, A.R., Doerr, S.H., Santin, C., Froyd, C.A., Sinnadurai, P., 2018. Prescribed fire and its impacts on ecosystem services in the UK. Science of the Total Environment, 624, 691–703.10.1016/j.scitotenv.2017.12.16129272838
  58. Heath, J., Chafer, C., Van Ogtrop, F., Bishop, T., 2014. Postwildfire recovery of water yield in the Sydney Basin water supply catchments: An assessment of the 2001/2002 wildfires. Journal of Hydrology, 519, 1428–1440.10.1016/j.jhydrol.2014.09.033
  59. Hoch, O.J., McGuire, L.A., Youberg, A.M., Rengers, F.K., 2021. Hydrogeomorphic recovery and temporal changes in rainfall thresholds for debris flows following wildfire. Journal of Geophysical Research: Earth Surface, 126, e2021JF006374.10.1029/2021JF006374
  60. Hosseini, M., Geissen, V., Gonzáles-Pelayo, O., Serpa, D., Machado, A.I., Ritsema, C., Keizer, J.J., 2017. Effects of fire occurrence and recurrence on nitrogen and phosphorus losses by overland flow in maritime pine plantations in north-central Portugal. Geoderma, 289, 97–106.10.1016/j.geoderma.2016.11.033
  61. Hoyt, W.G., Troxell, H.C., 1934. Forests and stream flow. Transactions of the American Society of Civil Engineers, 99, 1, 1–30.10.1061/TACEAT.0004544
  62. Hubbert, K.R., Wohlgemuth, P.M., Beyers, J.L., Narog, M.G., Gerrard, R., 2012. Post-fire soil water repellency, hydrologic response, and sediment yield compared between grassconverted and chaparral watersheds. Fire Ecology, 8, 2, 143–162.10.4996/fireecology.0802143
  63. Hughes, R.M., Whittier, T.R., Rohm, C.M., Larsen, D.P., 1990. A regional framework for establishing recovery criteria.. Environmental Management, 14, 5, 673–683.10.1007/BF02394717
  64. Imeson, A.C., Verstraten, J.M., van Mulligen, E.J., Sevink, J., 1992. The effects of fire and water repellency on infiltration and runoff under Mediterranean type forest. Catena, 19, 3–4, 345–361.10.1016/0341-8162(92)90008-Y
  65. Inbar, M., Tamir, M., Wittenberg, L., 1998. Runoff and erosion processes after a forest fire in Mount Carmel, a Mediterranean area. Geomorphology, 24, 1, 17–33.10.1016/S0169-555X(97)00098-6
  66. Kean, J.W., Staley, D.M., Cannon, S.H., 2011. In situ measurements of post-fire debris flows in southern California: Comparisons of the timing and magnitude of 24 debris-flow events with rainfall and soil moisture conditions. Journal of Geophysical Research F: Earth Surface, 116, 4. DOI: 10.1029/2011JF002005
  67. Keller, E.A., Valentine, D.W., Gibbs, D.R., 1997. Hydrological response of small watersheds following the Southern California Painted Cave Fire of June 1990. Hydrological Processes, 11, 4, 401–414.10.1002/(SICI)1099-1085(19970330)11:4<401::AID-HYP447>3.0.CO;2-P
  68. Kim, Y., Kim, C.-G., Lee, K.S., Choung, Y., 2021. Effects of post-fire vegetation recovery on soil erosion in vulnerable montane regions in a monsoon climate: a decade of monitoring. Journal of Plant Biology, 64, 2, 123–133.10.1007/s12374-020-09283-1
  69. Kinner, D.A., Moody, J.A., 2010. Spatial variability of steadystate infiltration into a two-layer soil system on burned hillslopes. Journal of Hydrology, 381, 3–4, 322–332.10.1016/j.jhydrol.2009.12.004
  70. Kinoshita, A.M., Chin, A., Simon, G.L., Briles, C., Hogue, T.S., O’Dowd, A.P., Gerlak, A.K., Albornoz, A.U., 2016. Wildfire, water, and society: Toward integrative research in the “Anthropocene”. Anthropocene, 16, 16–27.10.1016/j.ancene.2016.09.001
  71. Kinoshita, A.M., Hogue, T.S., 2011. Spatial and temporal controls on post-fire hydrologic recovery in Southern California watersheds. Catena, 87, 2, 240–252.10.1016/j.catena.2011.06.005
  72. Kinoshita, A.M., Hogue, T.S., 2015. Increased dry season water yield in burned watersheds in Southern California. Environmental Research Letters, 10, 014003.10.1088/1748-9326/10/1/014003
  73. Kruskal, W.H., Wallis, W.A., 1952. Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47, 260, 583–621.10.1080/01621459.1952.10483441
  74. Kuczera, G., 1987. Prediction of water yield reductions following a bushfire in ash-mixed species eucalypt forest. Journal of Hydrology, 94, 3–4, 215–236.10.1016/0022-1694(87)90054-0
  75. Kunze, M.D., Stednick, J.D., 2006. Streamflow and suspended sediment yield following the 2000 Bobcat fire, Colorado. Hydrological Processes, 20, 1661–1681.10.1002/hyp.5954
  76. Lamb, M.P., Scheingross, J.S., Amidon, W.H., Swanson, E., Limaye, A., 2011. A model for fire-induced sediment yield by dry ravel in steep landscapes. Journal of Geophysical Research: Earth Surface, 116, F03006.10.1029/2010JF001878
  77. Larson-Nash, S.S., Robichaud, P.R., Pierson, F.B., Moffet, C.A., Williams, C.J., Spaeth, K.E., Brown, R.E., Lewis, S.A., 2018. Recovery of small-scale infiltration and erosion after wildfires. Journal of Hydrology and Hydromechanics, 66, 3, 261–270.10.1515/johh-2017-0056
  78. Lasslop, G., Brovkin, V., Reick, C.H., Bathiany, S., Kloster, S., 2016. Multiple stable states of tree cover in a global land surface model due to a fire-vegetation feedback. Geophysical Research Letters, 43, 12, 6324–6331.10.1002/2016GL069365
  79. Leighton-Boyce, G., Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., Ferreira, A.J.D., Boulet, A.-K., Coelho, C.O.A., 2005. Temporal dynamics of water repellency and soil moisture in eucalypt plantations, Portugal. Australian Journal of Soil Research, 43, 3, 269–280.10.1071/SR04082
  80. Leverkus, A.B., Buma, B., Wagenbrenner, J., Burton, P.J., Lingua, E., Marzano, R., Thorn, S., 2021. Tamm review: Does salvage logging mitigate subsequent forest disturbances? Forest Ecology and Management, 481, 118721.10.1016/j.foreco.2020.118721
  81. Liu, T., McGuire, L.A., Wei, H.Y., Rengers, F.K., Gupta, H., Ji, L., Goodrich, D.C., 2021. The timing and magnitude of changes to Hortonian overland flow at the watershed scale during the post-fire recovery process. Hydrological Processes, 35, 5, e14208.10.1002/hyp.14208
  82. MacDonald, L., 2000. Evaluating and managing cumulative effects: Process and constraints. Environmental Management, 26, 299–315. DOI:https://doi.org/10.1007/s00267001008810.1007/s00267001008810977883
  83. Martin, D.A., 2016. At the nexus of fire, water and society. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 1696, 20150172.10.1098/rstb.2015.0172487441027216505
  84. Mataix-Solera, J., Doerr, S., 2004. Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in southeastern Spain. Geoderma, 118, 1–2, 77–88. DOI: 10.1016/S0016-7061(03)00185-X
  85. Maxwell, S.L., Fuller, R.A., Brooks, T.M., Watson, J.E.M., 2016. The ravages of guns, nets and bulldozers. Nature, 536, 143–145.10.1038/536143a27510207
  86. May, R.M., 1977. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature, 269, 471–477.10.1038/269471a0
  87. Mayor, A.G., Valdecantos, A., Vallejo, V.R., Keizer, J.J., Bloem, J., Baeza, J., González-Pelayo, O., Machado, A.I., de Ruiter, P.C., 2016. Fire-induced pine woodland to shrubland transitions in Southern Europe may promote shifts in soil fertility. Science of the Total Environment, 573, 1232–1241.10.1016/j.scitotenv.2016.03.24327156440
  88. McGuire, L.A., Rengers, F.K., Kean, J.W., Staley, D.M., 2017. Debris flow initiation by runoff in a recently burned basin: Is grain-by-grain sediment bulking or en masse failure to blame? Geophysical Research Letters, 44, 14, 7310–7319. DOI: 10.1002/2017GL074243
  89. McGuire, L.A., Youberg, A.M., 2020. What drives spatial variability in rainfall intensity-duration thresholds for post-wildfire debris flows? Insights from the 2018 Buzzard Fire, NM, USA. Landslides, 17, 10, 2385–2399.10.1007/s10346-020-01470-y
  90. Meyn, A., White, P.S., Buhk, C., Jentsch, A., 2007. Environmental drivers of large, infrequent wildfires: the emerging conceptual model. Prog. Phys. Geog., 31, 3, 287–312. DOI: 10.1177/0309133307079365
  91. Minshall, G.W., Robinson, C.T., Lawrence, D.E., 1997. Postfire responses of lotic ecosystems in Yellowstone National Park, USA. Canadian Journal of Fisheries and Aquatic Sciences, 54, 11, 2509-2525.10.1139/f97-160
  92. Mirus, B.B., Ebel, B.A., Mohr, C.H., Zegre, N., 2017. Disturbance hydrology: Preparing for an increasingly disturbed future. Water Resources Research, 53, 12, 10007–10016.10.1002/2017WR021084
  93. Mitsudera, M., Kamata, Y., Nakane, K., 1984. Effect of fire on water and major nutrient budgets in forest ecosystems: III. Rainfall interception by forest canopy. Japanese Journal of Ecology, 34, 1, 15–25. DOI: 10.18960/seitai.34.1_15
  94. Moeser, C.D., Broxton, P.D., Harpold, A., Robertson, A., 2020. Estimating the effects of forest structure changes from wildfire on snow water resources under varying meteorological conditions. Water Resources Research, 56, 11, e2020WR027071.10.1029/2020WR027071
  95. Moody, J.A., Martin, D.A., 2001a. Initial hydrologic and geomorphic response following a wildfire in the Colorado front range. Earth Surface Processes and Landforms, 26, 10, 1049–1070. DOI: 10.1002/esp.253
  96. Moody, J.A., Martin, D.A., 2001b. Post-fire, rainfall intensitypeak discharge relations for three mountainous watersheds in the Western USA. Hydrological Processes, 15, 15, 2981–2993.10.1002/hyp.386
  97. Moody, J.A., Kinner, D.A., Úbeda, X., 2009. Linking hydraulic properties of fire-affected soils to infiltration and water repellency. Journal of Hydrology, 379, 3–4, 291–303. DOI: 10.1016/j.jhydrol.2009.10.015
  98. Moody, J.A., Martin, R.G., Ebel, B.A., 2019. Sources of inherent infiltration variability in post-wildfire soils. Hydrological Processes, 33, 3010–3029. DOI: 10.1002/hyp.13543
  99. Moody, J.A., Shakesby, R.A., Robichaud, P.R., Cannon, S.H., Martin, D.A., 2013. Current research issues related to postwildfire runoff and erosion processes. Earth-Science Reviews, 122, 10–37. DOI: 10.1016/j.earscirev.2013.03.004
  100. Moreno, H.A., Gourley, J.J., Pham, T.G., Spade, D.M., 2019. Utility of satellite-derived burn severity to study short- and long-term effects of wildfire on streamflow at the basin scale. Journal of Hydrology, 580, 124244. DOI: 10.1016/j.jhydrol.2019.124244
  101. Murphy, S.F., McCleskey, R.B., Martin, D.A., Holloway, J.M., Writer, J.H., 2020. Wildfire-driven changes in hydrology mobilize arsenic and metals from legacy mine waste. Science of the Total Environment, 743, 140635.10.1016/j.scitotenv.2020.14063532663689
  102. Murphy, S.F., McCleskey, R.B., Martin, D.A., Writer, J.H., Ebel, B.A., 2018. Fire, flood, and drought: extreme climate events alter flow paths and stream chemistry. Journal of Geophysical Research: Biogeosciences, 123, 8, 2513–2526.
  103. Neris, J., Santamarta, J.C., Doerr, S.H., Prieto, F., Agulló-Pérez, J., García-Villegas, P., 2016. Post-fire soil hydrology, water erosion and restoration strategies in Andosols: a review of evidence from the Canary Islands (Spain). iForest- Biogeosciences and Forestry, 9, 4, 583–592.10.3832/ifor1605-008
  104. Niemeyer, R.J., Bladon, K.D., Woodsmith, R.D., 2020. Long-term hydrologic recovery after wildfire and post-fire forest management in the interior Pacific Northwest. Hydrological Processes, 34, 5, 1182–1197.10.1002/hyp.13665
  105. Nolan, R.H., Lane, P.N., Benyon, R.G., Bradstock, R.A., Mitchell, P.J., 2015. Trends in evapotranspiration and streamflow following wildfire in resprouting eucalypt forests. Journal of Hydrology, 524, 614–624.10.1016/j.jhydrol.2015.02.045
  106. Novák, V., Lichner, Ľ., Zhang, B., Kňava, K., 2009. The impact of heating on the hydraulic properties of soils sampled under different plant cover. Biologia, 64, 3, 483–486.10.2478/s11756-009-0099-2
  107. Nunes, J.P., Doerr, S.H., Sheridan, G., Neris, J., Santín, C., Emelko, M.B., Silins, U., Robichaud, P.R., Elliot, W.J., Keizer, J., 2018a. Assessing water contamination risk from vegetation fires: challenges, opportunities and a framework for progress. Hydrological Processes, 32, 5, 687–694.10.1002/hyp.11434
  108. Nunes, J.P., Quintanilla, P.N., Santos, J.M., Serpa, D., Carvalho- Santos, C., Rocha, J., Keizer, J.J., Keesstra, S.D., 2018b. Afforestation, subsequent forest fires and provision of hydrological services: A model-based analysis for a Mediterranean mountainous catchment. Land Degradation & Development, 29, 3, 776–788.10.1002/ldr.2776
  109. Nyman, P., Sheridan, G.J., Smith, H.G., Lane, P.N.J., 2011. Evidence of debris flow occurrence after wildfire in upland catchments of south-east Australia. Geomorphology, 125, 3, 383–401. DOI: 10.1016/j.geomorph.2010.10.016
  110. Nyman, P., Sheridan, G.J., Smith, H.G., Lane, P.N.J., 2014. Modeling the effects of surface storage, macropore flow and water repellency on infiltration after wildfire. Journal of Hydrology, 513, 301–313.10.1016/j.jhydrol.2014.02.044
  111. Omernik, J.M., 1987. Ecoregions of the conterminous United States. Annals of the Association of American Geographers, 77, 1, 118–125. DOI: 10.1111/j.1467-8306.1987.tb00149.x
  112. Pausas, J.G., Keeley, J.E., 2019. Wildfires as an ecosystem service. Frontiers in Ecology and the Environment, 17, 5, 289–295.10.1002/fee.2044
  113. Pereira, P., Úbeda, X., Martin, D.A., 2012. Fire severity effects on ash chemical composition and water-extractable elements. Geoderma, 191, 105–114.10.1016/j.geoderma.2012.02.005
  114. Pereira, P., Jordán, A., Cerdà, A., Martin, D.A., 2015. The role of ash in fire-affected ecosystems. Catena, 135, 337–339.10.1016/j.catena.2014.11.016
  115. Pereira, P., Mierauskas, P., Novara, A., 2016. Stakeholders’ perceptions about fire impacts on Lithuanian protected areas. Land Degradation & Development, 27, 4, 871–883.10.1002/ldr.2290
  116. Pereira, P., Bogunovic, I., Zhao, W., Barcelo, D., 2021. Shortterm effect of wildfires and prescribed fires on ecosystem services. Current Opinion in Environmental Science & Health, 22, 100266.10.1016/j.coesh.2021.100266
  117. Perkins, J.P., Diaz, C., Corbett, S.C., Cerovski-Darriau, C., Stock, J.D., Prancevic, J.P., Micheli, E., Jasperse, J., 2022. Multi-stage soil-hydraulic recovery and limited ravel accumulations following the 2017 Nuns and Tubbs wildfires in Northern California. Journal of Geophysical Research: Earth Surface, 127, 6, e2022JF006591. DOI: https://doi.org/10.1029/2022JF00659110.1029/2022JF006591
  118. Pierson, F.B., Robichaud, P.R., Spaeth, K.E., 2001. Spatial and temporal effects of wildfire on the hydrology of a steep rangeland watershed. Hydrological Processes, 15, 15, 2905–2916.10.1002/hyp.381
  119. Plaza-Álvarez, P., Lucas-Borja, M.E., Sagra, J., Zema, D.A., González-Romero, Moya, D., De las Heras, J., 2019. Changes in soil hydraulic conductivity after prescribed fires in Mediterranean pine forests. Journal of Environmental Management, 232, 1021–1027.10.1016/j.jenvman.2018.12.012
  120. Poon, P.K., Kinoshita, A.M., 2018. Spatial and temporal evapotranspiration trends after wildfire in semi-arid landscapes. Journal of Hydrology, 559, 71–83.10.1016/j.jhydrol.2018.02.023
  121. Prats, S., Malvar, M., Martins, M.A.S., Keizer, J.J., 2014. Postfire soil erosion mitigation: a review of the last research and techniques developed in Portugal. Cuadernos de Investigación Geográfica, 40, 2, 403–428.10.18172/cig.2519
  122. Prats, S.A., Wagenbrenner, J.W., Martins, M.A.S., Malvar, M.C., Keizer, J.J., 2016. Mid-term and scaling effects of forest residue mulching on post-fire runoff and soil erosion. Science of the Total Environment, 573, 1242–1254.10.1016/j.scitotenv.2016.04.064
  123. Prosser, I.P., Williams, L., 1998. The effect of wildfire on runoff and erosion in native Eucalyptus forest. Hydrological Processes, 12, 251–265.10.1002/(SICI)1099-1085(199802)12:2<251::AID-HYP574>3.0.CO;2-4
  124. Rathburn, S.L., Shahverdian, S.M., Ryan, S.E., 2018. Postdisturbance sediment recovery: Implications for watershed resilience. Geomorphology, 305, 61–75.10.1016/j.geomorph.2017.08.039
  125. Rey, D.M., Walvoord, M.A., Minsley, B.J., Ebel, B.A., Voss, C.I.,Singha, K., 2020. Wildfire-initiated talik development exceeds current thaw projections: Observations and models from Alaska’s continuous permafrost zone. Geophysical Research Letters, 47, 15, e2020GL087565.10.1029/2020GL087565
  126. Rhoades, C.C., Nunes, J.P., Silins, U., Doerr, S.H., 2019. The influence of wildfire on water quality and watershed processes: New insights and remaining challenges. International Journal of Wildland Fire, 28, 10, 721–725.10.1071/WFv28n10_FO
  127. Robichaud, P.R., 2000. Fire effects on infiltration rates after prescribed fire in Northern Rocky Mountain forests, USA. Journal of Hydrology, 231–232: 220–229. DOI: 10.1016/S0022-1694(00)00196-7
  128. Robichaud, P.R., Wagenbrenner, J.W., Pierson, F.B., Spaeth, K.E., Ashmun, L.E., Moffet, C.A., 2016. Infiltration and interrill erosion rates after a wildfire in western Montana, USA. Catena, 142, 77–88.10.1016/j.catena.2016.01.027
  129. Robinne, F.N., Hallema, D.W., Bladon, K.D., Buttle, J.M., 2020. Wildfire impacts on hydrologic ecosystem services in North American high-latitude forests: A scoping review. Journal of Hydrology, 581, 124360.10.1016/j.jhydrol.2019.124360
  130. Roces-Díaz, J.V., Santín, C., Martínez-Vilalta, J., Doerr, S.H., 2022. A global synthesis of fire effects on ecosystem services of forests and woodlands. Frontiers in Ecology and the Environment, 20, 3, 170–178. DOI: 10.1002/fee.2349
  131. Rojas, I.M., Jennings, M.K., Conlisk, E., Syphard, A.D., Mikesell, J., Kinoshita, A.M., West, K., Stow, D., Storey, E., De Guzman, M.E., Foote, D., Warneke, A., Pairis, A., Ryan, S., Flint, L.E., Flint, A.L., Lewison, R.L., 2022. A landscape-scale framework to identify refugia from multiple stressors. Conservation Biology, 36, 1, p.e13834.10.1111/cobi.13834929823234476838
  132. Rulli, M.C., Bozzi, S., Spada, M., Bocchiola, D., Rosso, R., 2006. Rainfall simulations on a fire disturbed Mediterranean area. Journal of Hydrology, 327, 3–4, 323–338.10.1016/j.jhydrol.2005.11.037
  133. Rust, A.J., Hogue, T.S., Saxe, S., McCray, J., 2018. Post-fire water-quality response in the western United States. International Journal of Wildland Fire, 27, 3, 203–216.10.1071/WF17115
  134. Saxe, S., Hogue, T.S., Hay, L., 2018. Characterization and evaluation of controls on post-fire streamflow response across western US watersheds. Hydrology and Earth System Sciences, 22, 2, 1221–1237.10.5194/hess-22-1221-2018
  135. Scheffer, M., Carpenter, S., Foley, J.A., Folke, C., Walker, B., 2001. Catastrophic shifts in ecosystems. Nature, 413, 6856, 591–596.10.1038/3509800011595939
  136. Serpa, D., Ferreira, R., Machado, A., Cerqueira, M., Keizer, J., 2020. Mid-term post-fire losses of nitrogen and phosphorus by overland flow in two contrasting eucalypt stands in northcentral Portugal. Science of the Total Environment, 705, 135843.10.1016/j.scitotenv.2019.13584331822414
  137. Shakesby, R.A., Coelho, C.O.A., Ferreira, A.D., Terry, J.P., Walsh, R.P.D., 1993. Wildfire impacts on soil erosion and hydrology in wet Mediterranean forest, Portugal. International Journal of Wildland Fire, 3, 95–110.10.1071/WF9930095
  138. Shakesby, R.A., Doerr, S.H., 2006. Wildfire as a hydrological and geomorphological agent. Earth-Science Reviews, 74, 269–307. DOI: 10.1016/j.earscirev.2005.10.006.
  139. Shin, S.S., Park, S.D., Lee, K.S., 2013. Sediment and hydrological response to vegetation recovery following wildfire on hillslopes and the hollow of a small watershed. Journal of Hydrology, 499, 154–166.10.1016/j.jhydrol.2013.06.048
  140. Staley, D.M., Kean, J.W., Cannon, S.H., Schmidt, K.M., Laber, J.L., 2013. Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California. Landslides, 10, 5, 547–562. DOI: 10.1007/s10346-012-0341-9
  141. Stoof, C.R., Vervoort, R.W., Iwema, J., van den Elsen, E., Ferreira, A.J.D., Ritsema, C.J., 2012. Hydrological response of a small catchment burned by experimental fire. Hydrol. Earth Syst. Sci., 16, 267–285. DOI: 10.5194/hess-16-267-2012
  142. Stoof, C.R., Wesseling, J.G., Ritsema, C.J., 2010. Effects of fire and ash on soil water retention. Geoderma, 159, 276–285. DOI: 10.1016/j.geoderma.2010.08.002
  143. Swanson, F.J., 1981. Fire and geomorphic processes. In: Mooney, H.A., Bonnicksen, T.M., Christiansen, N.L., Lotan, J.E., Reiners, W.A. (Eds.): Fire Regime and Ecosystem Properties. United States Department of Agriculture, Forest Service, General Technical Report WO, United States Government Planning Office, Washington, DC, pp. 401–421.
  144. Tessler, N., Wittenberg, L., Greenbaum, N., 2012. Soil water repellency persistence after recurrent forest fires on Mount Carmel, Israel. International Journal of Wildland Fire, 22, 4, 515–526.10.1071/WF12063
  145. Thomas, M.A., Rengers, F.K., Kean, J.W., McGuire, L.A., Staley, D.M., Barnhart, K.R., Ebel, B.A., 2021. Postwildfire soil-hydraulic recovery and the persistence of debris flow hazards. Journal of Geophysical Research: Earth Surface, 126, 6, e2021JF006091.10.1029/2021JF006091
  146. Tryhorn, L., Lynch, A., Abramson, R., Parkyn, K., 2008. On the meteorological mechanisms driving postfire flash floods: A case study. Monthly Weather Review, 136, 5, 1778–1791.10.1175/2007MWR2218.1
  147. Ulery, A.L., Graham, R.C., 1993. Forest fire effects on soil color and texture. Soil Sci. Soc. Am. J., 57, 135–140.10.2136/sssaj1993.03615995005700010026x
  148. Valeron, B., Meixner, T., 2010. Overland flow generation in chaparral ecosystems: temporal and spatial variability. Hydrological Processes, 24, 1, 65–75. DOI: 10.1002/hyp.7455
  149. Vertessy, R.A., Watson, F.G., Sharon, K.O., 2001. Factors determining relations between stand age and catchment water balance in mountain ash forests. Forest Ecology and Management, 143, 1–3, 13–26.10.1016/S0378-1127(00)00501-6
  150. Vieira, D., Serpa, D., Nunes, J.P.C., Prats, S.A., Neves, R., Keizer, J.J., 2018. Predicting the effectiveness of different mulching techniques in reducing post-fire runoff and erosion at plot scale with the RUSLE, MMF and PESERA models. Environmental Research, 165, 365–378.10.1016/j.envres.2018.04.02929803019
  151. Vukomanovic, J., Steelman, T., 2019. A systematic review of relationships between mountain wildfire and ecosystem services. Landscape Ecology, 34, 1179–1194.10.1007/s10980-019-00832-9
  152. Wagenbrenner, J.W., Ebel, B.A., Bladon, K.D., Kinoshita, A.M., 2021. Post-wildfire hydrologic recovery in Mediterranean climates: A systematic review and case study to identify current knowledge and opportunities. Journal of Hydrology, 602, 126772. DOI: https://doi.org/10.1016/j.jhydrol.2021.12677210.1016/j.jhydrol.2021.126772
  153. Wagenbrenner, J.W., MacDonald, L.H., Coats, R.N., Robichaud, P.R., Brown, R.E., 2015. Effects of post-fire salvage logging and a skid trail treatment on ground cover, soils, and sediment production in the interior western United States. Forest Ecology and Management, 335, 176–193.10.1016/j.foreco.2014.09.016
  154. Warren, D.R., Roon, D.A., Swartz, A.G., Bladon, K.D., 2022. Loss of riparian forests from wildfire led to increased stream temperatures in summer, yet salmonid fish persisted. Ecosphere, 13, 9, e4233. DOI: 10.1002/ecs2.4233
  155. Webb, A.A., Jarrett, B.W., 2013. Hydrological response to wildfire, integrated logging and dry mixed species eucalypt forest regeneration: the Yambulla experiment. Forest Ecology and Management, 306, 107–117.10.1016/j.foreco.2013.06.020
  156. Wilder, B.A., Kinoshita, A.M., 2022. Incorporating ECOSTRESS evapotranspiration in a paired catchment water balance analysis after the 2018 Holy Fire in California. Catena, 215, 106300.10.1016/j.catena.2022.106300
  157. Williams, A.P., Livneh, B., McKinnon, K.A., Lettenmaier, D.P., 2022. Growing impact of wildfire on western US water supply. Proceedings of the National Academy of Sciences, 119, 10, e2114069119.10.1073/pnas.2114069119891583535193939
  158. Williams, C.J., Pierson, F.B., Kormos, P.R., Al-Hamdan, O.Z., Hardegree, S.P., Clark, P.E., 2016a. Ecohydrologic response and recovery of a semi-arid shrubland over a five year period following burning. Catena, 144, 163–176.10.1016/j.catena.2016.05.006
  159. Williams, C.J., Pierson, F.B., Spaeth, K.E., Brown, J.R., Al-Hamdan, O.Z., Weltz, M.A., Nearing, M.A., Herrick, J.E., Boll, J., Robichaud, P.R., Goodrich, D.C., Heilman, P., Guertin, D.P., Hernandez, M., Wei, H.Y., Hardegree, S.P., Strand, E.K., Bates, J.D., Metz, L.J., Nichols, M.H., 2016b. Incorporating hydrologic data and ecohydrologic relationships into ecological site descriptions. Rangeland Ecology & Management, 69, 1, 4–19.10.1016/j.rama.2015.10.001
  160. Wilson, C., Kampf, S.K., Wagenbrenner, J.W., MacDonald, L.H., 2018. Rainfall thresholds for post-fire runoff and sediment delivery from plot to watershed scales. Forest ecology and management, 430, 346–356.10.1016/j.foreco.2018.08.025
  161. Wine, M.L., Cadol, D., Makhnin, O., 2018. In ecoregions across western USA streamflow increases during post-wildfire recovery. Environmental Research Letters, 13, 1, 014010.10.1088/1748-9326/aa9c5a
  162. Wittenberg, L., Inbar, M., 2009. The role of fire disturbance on runoff and erosion processes–a long-term approach, Mt. Carmel case study, Israel. Geographical Research, 47, 1, 46–56.10.1111/j.1745-5871.2008.00554.x
  163. Wittenberg, L., van der Wal, H., Keesstra, S., Tessler, N., 2020. Post-fire management treatment effects on soil properties and burned area restoration in a wildland-urban interface, Haifa Fire case study. Science of the Total Environment, 716, 135190.10.1016/j.scitotenv.2019.13519031837883
  164. Wolf, E.C., Cooper, D.J., Hobbs, N.T., 2007. Hydrologic regime and herbivory stabilize an alternative state in Yellowstone National Park. Ecological Applications, 17, 6, 1572–1587.10.1890/06-2042.117913124
  165. Woods, S.W., Birkas, A., Ahl, R., 2007. Spatial variability of soil hydrophobicity after wildfires in Montana and Colorado. Geomorphology, 86, 3–4, 465–479. DOI: 10.1016/j.geomorph.2006.09.015
  166. Zema, D.A., 2021. Postfire management impacts on soil hydrology. Current Opinion in Environmental Science & Health, 21, 100252.10.1016/j.coesh.2021.100252
DOI: https://doi.org/10.2478/johh-2022-0033 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 388 - 400
Submitted on: Sep 9, 2022
Accepted on: Oct 18, 2022
Published on: Nov 16, 2022
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Brian A. Ebel, Joseph W. Wagenbrenner, Alicia M. Kinoshita, Kevin D. Bladon, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.