Have a personal or library account? Click to login
Effects of prescribed fire on topsoil properties: a small-scale straw burning experiment Cover

Effects of prescribed fire on topsoil properties: a small-scale straw burning experiment

Open Access
|Nov 2022

References

  1. Alcañiz, M., Outeiro, L., Francos, M., Úbeda, X., 2018. Effects of prescribed fires on soil properties: A review. Science of the Total Environment, 613–614, 944–957. DOI: 10.1016/j.scitotenv. 2017.09.144
  2. Atchley, A.L., Kinoshita, A.M., Lopez, S.R., Trader, L., Middleton, R, 2018. Simulating surface and subsurface water balance changes due to burn severity. Vadose Zone Journal, 17, 1, 180099. DOI: 10.2136/vzj2018.05.0099
  3. Badía, D., Martí, C., 2003. Plant ash and heat intensity effects on chemical and physical properties of two contrasting soils. Arid Land Research and Management, 17, 1, 23–41. DOI: 10.1080/15324980301595
  4. Badía, D., Martí, C., Aguirre, A.J., Aznar, J.M., González-Pérez, J.A., De la Rosa, J.M., León, J., Ibarra, P., Echeverría, T., 2014. Wildfire effects on nutrients and organic carbon of a Rendzic Phaeozem in NE Spain: Changes at cm-scale topsoil. Catena, 113, 267–275. DOI: 10.1016/j.catena.2013.08.002
  5. Barroso, P.M., Vaverková, M.D., 2020. Fire effects on soils – A pilot scale study on the soils affected by wildfires in the Czech Republic. Journal of Ecological Engineering, 21, 6, 248–256. DOI: 10.12911/22998993/123471
  6. Bennett, L.T., Aponte, C., Baker, T.G., Tolhurst, K.G., 2014. Evaluating long-term effects of prescribed fire regimes on carbon stocks in a temperate eucalypt forest. Forest Ecology and Management, 328, 219–228. DOI: 10.1016/j.foreco.2014.05.028
  7. Bird, M.I., Veenendaal, E.M., Moyo, C., Lloyd, J., Frost, P., 2000. Effect of fire and soil texture on soil carbon in a subhumid savanna (Matopos, Zimbabwe). Geoderma, 94, 1, 71–90. DOI: 10.1016/S0016-7061(99)00084-1
  8. Blakemore, L.C., 1972. Methods for chemical analysis of soils.
  9. Bogena, H.R., Herbst, M., Huisman, J.A., Rosenbaum, U., Weuthen, A., Vereecken, H., 2010. Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone Journal, 9, 4, 1002–1013. DOI: 10.2136/vzj2009.0173
  10. Boyer, W.D., Miller, J.H., 1994. Effect of burning and brush treatments on nutrient and soil physical properties in young longleaf pine stands. Forest Ecology and Management, 70, 311–318.10.1016/0378-1127(94)90096-5
  11. Brye, K.R., 2006. Soil physiochemical changes following 12 years of annual burning in a humid–subtropical tallgrass prairie: a hypothesis. Acta Oecologica, 30, 3, 407–413. DOI: 10.1016/j.actao.2006.06.001
  12. Caon, L., Vallejo, V.R., Ritsema, C.J., Geissen, V., 2014. Effects of wildfire on soil nutrients in Mediterranean ecosystems. Earth-Science Reviews, 139, 47–58. DOI: 10.1016/j.earscirev. 2014.09.001
  13. Cawson, J.G., Nyman, P., Smith, H.G., Lane, P.N.J., Sheridan, G.J., 2016. How soil temperatures during prescribed burning affect soil water repellency, infiltration and erosion. Geoderma, 278, 12–22. DOI: 10.1016/j.geoderma.2016.05.002
  14. Chen, J.J., McGuire, K.J., Stewart, R.D., 2020. Effect of soil water-repellent layer depth on post-wildfire hydrological processes. Hydrological Processes, 34, 2, 270–283. DOI: 10.1002/hyp.13583
  15. DeBano, L.F, 2000. The role of fire and soil heating on water repellency in wildland environments: a review. Journal of Hydrology, 231–232, 195–206. DOI: 10.1016/S0022-1694(00)00194-3
  16. Dekker, L.W., Ritsema, C.J., Oostindie, K., Moore, D., Wesseling, J.G., 2009. Methods for determining soil water repellency on field-moist samples. Water Resources Research, 45, 4. DOI: 10.1029/2008WR007070
  17. Delač, D., Pereira, P., Bogunović, I., Kisić, I., 2020. Short-Term Effects of Pile Burn on N Dynamic and N Loss in Mediterranean Croatia. Agronomy, 10, 9, 1340. DOI: 10.3390/agronomy10091340
  18. Dohnal, M., Dusek, J., Vogel, T., 2010. Improving hydraulic conductivity estimates from minidisk infiltrometer measurements for soils with wide pore-size distributions. Soil Sci. Soc. Am. J., 74, 3, 804–811. DOI: 10.2136/sssaj2009.0099
  19. Driessen, P.M., 2001. Lecture notes on the major soils of the world. Rome: FAO (World soil resources reports, 94).
  20. Ebel, B.A., 2012. Wildfire impacts on soil-water retention in the Colorado Front Range, United States. Water Resources Research, 48, W12515. DOI: 10.1029/2012WR012362
  21. Ebel, B.A., 2019. Measurement method has a larger impact than spatial scale for plot-scale field-saturated hydraulic conductivity (Kfs) after wildfire and prescribed fire in forests. Earth Surface Processes and Landforms, 44, 10, 1945–1956. DOI: 10.1002/esp.4621
  22. Ebel, B.A., 2020. Temporal evolution of measured and simulated infiltration following wildfire in the Colorado Front Range, USA: Shifting thresholds of runoff generation and hydrologic hazards. Journal of Hydrology, 585, 124765. DOI: 10.1016/j.jhydrol.2020.124765
  23. Ebel, B.A., Martin, D.A., 2017. Meta-analysis of field-saturated hydraulic conductivity recovery following wildland fire: Applications for hydrologic model parameterization and resilience assessment. Hydrological Processes, 31, 21, 3682–3696. DOI: 10.1002/hyp.11288
  24. Ebel, B.A., Moody, J.A., 2020. Parameter estimation for multiple post-wildfire hydrologic models. Hydrological Processes, 34, 21, 4049–4066. DOI: 10.1002/hyp.13865
  25. Fire Rescue Service of the Czech Republic, 2020. Statistical Yearbook 2019. Ministry of the Interior, General Directorate Fire Rescue Service of the Czech Republic. Available online at https://www.hzscr.cz/hasicien/article/statisticalyearbooks.aspx
  26. Giovannini, G., Lucchesi, S., 1997. Modifications induced in soil physico-chemical parameters by experimental fires at different intensities. Soil Science, 162, 7. Available online at https://journals.lww.com/soilsci/Fulltext/1997/07000/Modifications__Induced_In_Soil_Physico_Chemical.3.aspx10.1097/00010694-199707000-00003
  27. Girona-García, A., Badía-Villas, D., Martí-Dalmau, C., Ortiz- Perpiñá, O., Mora, J.L., Armas-Herrera, C.M., 2018. Effects of prescribed fire for pasture management on soil organic matter and biological properties: A 1-year study case in the Central Pyrenees. Science of the Total Environment, 618, 1079–1087. DOI: 10.1016/j.scitotenv.2017.09.12729122341
  28. Godwin, D.R., Kobziar, L.N., Robertson, K.M., 2017. Effects of fire frequency and soil temperature on soil CO2 efflux rates in old-field pine-grassland forests. Forests, 8, 8, 274. DOI: 10.3390/f8080274
  29. Hillel, D., 2004. Introduction to Environmental Soil Physics. Elsevier Academic Press, Amsterdam, London.
  30. Imeson, A.C., Verstraten, J.M., van Mulligen, E.J., Sevink, J., 1992. The effects of fire and water repellency on infiltration and runoff under Mediterranean type forest. Catena, 19, 3–4, 345–361. DOI: 10.1016/0341-8162(92)90008-Y
  31. Johnson, D.W., Curtis, P.S., 2001. Effects of forest management on soil C and N storage: meta analysis. Forest Ecology and Management, 140, 2–3, 227–238. DOI: 10.1016/S0378-1127(00)00282-6
  32. Kemper, W.D., Rosenau, R.C., 1986. Aggregate stability and size distribution. In: Klute, A. (Ed.): Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods. 2nd Ed. Soil Science Society of America, Madison, WI.
  33. Levene, H., 1960. Contributions to probability and statistics. In: Olkin, I. (Ed.): Stanford Studies in Mathematics and Statistics, 2. Univ. Press, Palo Alto, CA.
  34. Maina, F.Z., Siirila-Woodburn, E.R., 2020. Watersheds dynamics following wildfires: Nonlinear feedbacks and implications on hydrologic responses. Hydrological Processes, 34, 1, 33–50. DOI: 10.1002/hyp.13568
  35. Mataix-Solera, J., Doerr, S.H., 2004. Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in southeastern Spain. Geoderma, 118, 1–2, 77–88. DOI: 10.1016/S0016-7061(03)00185-X
  36. Moody, J.A., Ebel, B.A., Nyman, P., Martin, D.A., Stoof, C., McKinley, R., 2016. Relations between soil hydraulic properties and burn severity. International Journal of Wildland Fire, 25, 3, 279–293. DOI: 10.1071/WF14062
  37. Muqaddas, B., Chen, C.R., Lewis, T., Wild, C., 2016. Temporal dynamics of carbon and nitrogen in the surface soil and forest floor under different prescribed burning regimes. Forest Ecology and Management, 382, 110–119. DOI: 10.1016/j.foreco.2016.10.010
  38. Muqaddas, B., Zhou, X.Q., Lewis, T., Wild, C., Chen, C.R., 2015. Long-term frequent prescribed fire decreases surface soil carbon and nitrogen pools in a wet sclerophyll forest of Southeast Queensland, Australia. Science of the Total Environment, 536, 39–47. DOI: 10.1016/j.scitotenv.2015.07.02326196067
  39. Philip, J.R., 1957. The theory of infiltration: 1. The infiltration equation and its solution. Soil Science, 83, 5. https://journals.lww.com/soilsci/Fulltext/1957/05000/THE_THEORY_OF_INFILTRATION__1__THE_INFILTRATION.2.aspx10.1097/00010694-195705000-00002
  40. Rab, M.A., 1996. Soil physical and hydrological properties following logging and slash burning in the Eucalyptus regnans forest of southeastern Australia. Forest Ecology and Management, 84, 1–3, 159–176. DOI: 10.1016/0378-1127(96)03740-1
  41. Scharenbroch, B.C., Nix, B., Jacobs, K.A., Bowles, M.L., 2012. Two decades of low-severity prescribed fire increases soil nutrient availability in a Midwestern, USA oak (Quercus) forest. Geoderma, 183–184, 80–91. DOI: 10.1016/j.geoderma.2012.03.010
  42. Shapiro, S.S., Wilk, M.B., 1965. An analysis of variance test for normality (Complete samples). Biometrika, 52, 3–4, 591. DOI: 10.2307/2333709
  43. Silva, J.S., Rego, F.C., Mazzoleni, S., 2006. Soil water dynamics after fire in a Portuguese shrubland. International Journal of Wildland Fire, 15, 1, 99–111. DOI: 10.1071/WF04057
  44. Stoof, C.R., Ferreira, A.J.D., Mol, W., van den Berg, J., de Kort, A., Drooger, S., Slingerland, E.C., Mansholt, A.U., Ferreira, C.S.S., Ritsema, C.J., 2015. Soil surface changes increase runoff and erosion risk after a low–moderate severity fire. Geoderma, 239–240, 58–67. DOI: 10.1016/j.geoderma.2014.09.020
  45. Stoof, C.R., Wesseling, J.G., Ritsema, C.J., 2010. Effects of fire and ash on soil water retention. Geoderma, 159, 3–4, 276–285. DOI: 10.1016/j.geoderma.2010.08.002
  46. Swift Jr., L.W., Elliott, K.J., Ottmar, R.D., Vihnanek, R.E., 1993. Site preparation burning to improve southern Appalachian pine–hardwood stands: fire characteristics and soil erosion, moisture, and temperature. Can. J. For. Res., 23, 10, 2242–2254. DOI: 10.1139/x93-278
  47. Taylor, Q.A., Midgley, M.G., 2018. Prescription side effects: Long-term, high-frequency controlled burning enhances nitrogen availability in an Illinois oak-dominated forest. Forest Ecology and Management, 411, 82–89. DOI: 10.1016/j.foreco.2017.12.041
  48. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D. et al., 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272. DOI: 10.1038/s41592-019-0686-2705664432015543
  49. Wieting, C., Ebel, B.A., Singha, K., 2017. Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory. Journal of Hydrology: Regional Studies, 13, 43–57. DOI: 10.1016/j.ejrh.2017.07.006
  50. Žalud, Z., Trnka, M., Hlavinka, P., 2020. Zemědělské sucho v České republice-Vývoj, dopady a adaptace. Agrární komora České republiky.
  51. Zhang, R., 1997. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Science Society of America Journal, 61, 4, 1024–1030. DOI: 10.2136/sssaj1997.03615995006100040005x
DOI: https://doi.org/10.2478/johh-2022-0032 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 450 - 461
Submitted on: Sep 14, 2022
Accepted on: Oct 16, 2022
Published on: Nov 16, 2022
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Tailin Li, Jakub Jeřábek, Jan Winkler, Magdalena Daria Vaverková, David Zumr, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.