Have a personal or library account? Click to login
Variability of soil properties with fire severity in pine forests and reforested areas under Mediterranean conditions Cover

Variability of soil properties with fire severity in pine forests and reforested areas under Mediterranean conditions

Open Access
|Nov 2022

References

  1. Agbeshie, A.A., Abugre, S., Atta-Darkwa, T., Awuah, R., 2022. A review of the effects of forest fire on soil properties. Journal of Forestry Research, 33, 5, 1419–1441.10.1007/s11676-022-01475-4
  2. Alcañiz, M., Outeiro, L., Francos, M., Úbeda, X., 2018. Effects of prescribed fires on soil properties: A review. Science of the Total Environment, 613, 944–957.10.1016/j.scitotenv.2017.09.14428946382
  3. Alcañiz, M., Úbeda, X., Cerdà, A., 2020. A 13-Year approach to understand the effect of prescribed fires and livestock grazing on soil chemical properties in Tivissa, NE Iberian Peninsula. Forests, 11, 1013.10.3390/f11091013
  4. Arocena, J.M., Opio, C., 2003. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma, 113, 1–16.10.1016/S0016-7061(02)00312-9
  5. Badía, D., López-García, S., Martí, C., Ortíz-Perpiñá, O., Girona-García, A., Casanova-Gascón, J., 2017. Burn effects on soil properties associated to heat transfer under contrasting moisture content. Science of The Total Environment 601–602, 1119–1128. https://doi.org/10.1016/j.scitotenv.2017.05.25410.1016/j.scitotenv.2017.05.25428599368
  6. Binkley, D., Fisher, R.F., 2019. Ecology and Management of Forest Soils. John Wiley & Sons.10.1002/9781119455745
  7. Cade-Menun, B.J., Berch, S.M., Preston, C.M., Lavkulich, L.M., 2000. Phosphorus forms and related soil chemistry of Podzolic soils on northern Vancouver Island. II. The effects of clear-cutting and burning. Can. J. For. Res., 30, 1726–1741. https://doi.org/10.1139/x00-09910.1139/x00-099
  8. Caon, L., Vallejo, V.R., Ritsema, C.J., Geissen, V., 2014. Effects of wildfire on soil nutrients in Mediterranean ecosystems. Earth-Science Reviews, 139, 47–58.10.1016/j.earscirev.2014.09.001
  9. Carra, B.G., Bombino, G., Lucas-Borja, M.E., Muscolo, A., Romeo, F., Zema, D.A., 2021. Short-term changes in soil properties after prescribed fire and mulching with fern in Mediterranean forests. Journal of Forestry Research, 33, 1271–1289.10.1007/s11676-021-01431-8
  10. Cawson, J.G., Sheridan, G.J., Smith, H.G., Lane, P.N.J., 2012. Surface runoff and erosion after prescribed burning and the effect of different fire regimes in forests and shrublands: a review. International Journal of Wildland Fire, 21, 857–872.10.1071/WF11160
  11. Certini, G., 2005. Effects of fire on properties of forest soils: a review. Oecologia, 143, 1–10.10.1007/s00442-004-1788-815688212
  12. Cheng, Y., Li, P., Xu, G., Wang, X., Li, Z., Cheng, S., Huang, M., 2021. Effects of dynamic factors of erosion on soil nitrogen and phosphorus loss under freeze-thaw conditions. Geoderma, 390, 114972.10.1016/j.geoderma.2021.114972
  13. Elliott, K.J., Knoepp, J.D., Vose, J.M., Jackson, W.A., 2013. Interacting effects of wildfire severity and liming on nutrient cycling in a southern Appalachian wilderness area. Plant Soil, 366, 165–183. https://doi.org/10.1007/s11104-012-1416-z10.1007/s11104-012-1416-z
  14. Fernández, C., Fernández-Alonso, J.M., Vega, J.A., 2020. Exploring the effect of hydrological connectivity and soil burn severity on sediment yield after wildfire and mulching. Land Degradation & Development, 31, 1611–1621.10.1002/ldr.3539
  15. Fernández, C., Vega, J.A., 2016. Modelling the effect of soil burn severity on soil erosion at hillslope scale in the first year following wildfire in NW Spain. Earth Surface Processes and Landforms, 41, 928–935.10.1002/esp.3876
  16. Fernández-Alonso, J.M., Fernández, C., Arellano, S., Vega, J.A., 2019. Modeling soil burn severity prediction for planning measures to mitigate post wildfire soil erosion in NW Spain. Chapter 27. In: Spatial Modeling in GIS and R for Earth and Environmental Sciences. Elsevier Inc., pp. 589–606. https://doi.org/10.1016/b978-0-12-815226-3.00027-210.1016/B978-0-12-815226-3.00027-2
  17. Giardina, C.P., Sanford, R.L., Døckersmith, I.C., 2000. Changes in soil phosphorus and nitrogen during slash-and-burn clearing of a dry tropical forest. Soil Science Society of America Journal, 64, 399–405.10.2136/sssaj2000.641399x
  18. Gimeno-García, E., Andreu, V., Rubio, J.L., 2000. Changes in organic matter, nitrogen, phosphorus and cations in soil as a result of fire and water erosion in a Mediterranean landscape. European Journal of Soil Science, 51, 201–210.10.1046/j.1365-2389.2000.00310.x
  19. Giovannini, C., Lucchesi, S., Giachetti, M., 1990. Effects of heating on some chemical parameters related to soil fertility and plant growth. Soil Science, 149, 344–350.10.1097/00010694-199006000-00005
  20. Giovannini, G., Lucchesi, S., Giachetti, M., 1988. Effect of heating on some physical and chemical parameters related to soil aggregation and erodibility. Soil Science, 146, 255–261.10.1097/00010694-198810000-00006
  21. Granged, A.J., Jordán, A., Zavala, L.M., Muñoz-Rojas, M., Mataix-Solera, J., 2011a. Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia). Geoderma, 167, 125–134.10.1016/j.geoderma.2011.09.011
  22. Granged, A.J., Zavala, L.M., Jordán, A., Bárcenas-Moreno, G., 2011b. Post-fire evolution of soil properties and vegetation cover in a Mediterranean heathland after experimental burning: A 3-year study. Geoderma, 164, 85–94.10.1016/j.geoderma.2011.05.017
  23. Gray, D.M., Dighton, J., 2006. Mineralization of forest litter nutrients by heat and combustion. Soil Biology and Biochemistry, 38, 1469–1477.10.1016/j.soilbio.2005.11.003
  24. Grogan, P., Burns, T.D., Chapin Iii, F.S., 2000. Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest. Oecologia, 122, 537–544.10.1007/s00442005097728308347
  25. Inbar, A., Lado, M., Sternberg, M., Tenau, H., Ben-Hur, M., 2014. Forest fire effects on soil chemical and physicochemical properties, infiltration, runoff, and erosion in a semiarid Mediterranean region. Geoderma, 221, 131–138.10.1016/j.geoderma.2014.01.015
  26. Jarvis, N., Koestel, J., Messing, I., Moeys, J., Lindahl, A., 2013. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrology and Earth System Sciences, 17, 5185–5195.10.5194/hess-17-5185-2013
  27. Khanna, P.K., Raison, R.J., 1986. Effect of fire intensity on solution chemistry of surface soil under a Eucalyptus pauciflora forest. Soil Res., 24, 423–434. https://doi.org/10.1071/sr986042310.1071/SR9860423
  28. Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 3, 259–263.10.1127/0941-2948/2006/0130
  29. Lee Rodgers, J., Nicewander, W.A., 1988. Thirteen ways to look at the correlation coefficient. The American Statistician, 42, 59–66.10.1080/00031305.1988.10475524
  30. Lucas-Borja, M.E., Delgado-Baquerizo, M., 2019. Plant diversity and soil stoichiometry regulates the changes in multi-functionality during pine temperate forest secondary succession. Science of The Total Environment, 697, 134204.10.1016/j.scitotenv.2019.13420431491638
  31. Lucas-Borja, Manuel Esteban, Bombino, G., Carrà, B.G., D’Agostino, D., Denisi, P., Labate, A., Plaza-Alvarez, P.A., Zema, D.A., 2020a. Modeling the soil response to rainstorms after wildfire and prescribed fire in Mediterranean forests. Climate, 8, 150. https://doi.org/10.3390/cli812015010.3390/cli8120150
  32. Lucas-Borja, Manuel E., Ortega, R., Miralles, I., Plaza-Álvarez, P.A., González-Romero, J., Peña-Molina, E., Moya, D., Zema, D.A., Wagenbrenner, J.W., De las Heras, J., 2020b. Effects of wildfire and logging on soil functionality in the short-term in Pinus halepensis M. forests. European Journal of Forest Research, 139, 935–945.10.1007/s10342-020-01296-2
  33. Lucas-Borja, M. E., Plaza-Álvarez, P.A., Ortega, R., Miralles, I., González-Romero, J., Sagra, J., Moya, D., Zema, D.A., de las Heras, J., 2020c. Short-term changes in soil functionality after wildfire and straw mulching in a Pinus halepensis M. forest. Forest Ecology and Management, 457, 117700.10.1016/j.foreco.2019.117700
  34. Lucas-Borja, M.E., Plaza-Àlvarez, P.A., Uddin, S.M., Parhizkar, M., Zema, D.A., 2022. Short-term hydrological response of soil after wildfire in a semi-arid landscape covered by Macrochloa tenacissima (L.) Kunth. Journal of Arid Environments, 198, 104702.10.1016/j.jaridenv.2021.104702
  35. Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., Zavala, L.M., 2011. Fire effects on soil aggregation: a review. Earth-Science Reviews, 109, 44–60.10.1016/j.earscirev.2011.08.002
  36. Merino, A., Fonturbel, M.T., Fernández, C., Chávez-Vergara, B., García-Oliva, F., Vega, J.A., 2018. Inferring changes in soil organic matter in post-wildfire soil burn severity levels in a temperate climate. Science of the Total Environment, 627, 622–632.10.1016/j.scitotenv.2018.01.18929426186
  37. Moody, J.A., Shakesby, R.A., Robichaud, P.R., Cannon, S.H., Martin, D.A., 2013. Current research issues related to post-wildfire runoff and erosion processes. Earth-Science Reviews, 122, 10–37.10.1016/j.earscirev.2013.03.004
  38. Mulvaney, R.L., Bremner, J.M., 1978. Use of p-benzoquinone and hydroquinone for retardation of urea hydrolysis in soils. Soil Biology and Biochemistry, 10, 297–302. https://doi.org/10.1016/0038-0717(78)90026-310.1016/0038-0717(78)90026-3
  39. Nachtergaele, F., 2001. Soil taxonomy—a basic system of soil classification for making and interpreting soil surveys. Geoderma, 99, 336–337.10.1016/S0016-7061(00)00097-5
  40. Neary, D.G., Klopatek, C.C., DeBano, L.F., Ffolliott, P.F., 1999. Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management, 122, 51–71.10.1016/S0378-1127(99)00032-8
  41. Neris, J., Tejedor, M., Fuentes, J., Jiménez, C., 2013. Infiltration, runoff and soil loss in Andisols affected by forest fire (Canary Islands, Spain). Hydrological Processes, 27, 2814–2824.10.1002/hyp.9403
  42. Pellegrini, A.F., Ahlström, A., Hobbie, S.E., Reich, P.B., Nieradzik, L.P., Staver, A.C., Scharenbroch, B.C., Jumpponen, A., Anderegg, W.R., Randerson, J.T., 2018. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature, 553, 194–198.10.1038/nature2466829227988
  43. Pereira, P., Francos, M., Brevik, E.C., Ubeda, X., Bogunovic, I., 2018. Post-fire soil management. Current Opinion in Environmental Science & Health, 5, 26–32. https://doi.org/10.1016/j.coesh.2018.04.00210.1016/j.coesh.2018.04.002
  44. Qiu, L., Zhu, H., Liu, J., Yao, Y., Wang, X., Rong, G., Zhao, X., Shao, M., Wei, X., 2021. Soil erosion significantly reduces organic carbon and nitrogen mineralization in a simulated experiment. Agriculture, Ecosystems & Environment, 307, 107232.10.1016/j.agee.2020.107232
  45. Reyes, O., García-Duro, J., Salgado, J., 2015. Fire affects soil organic matter and the emergence of Pinus radiata seedlings. Annals of Forest Science, 72, 267–275.10.1007/s13595-014-0427-8
  46. Rivas, Y., Huygens, D., Knicker, H., Godoy, R., Matus, F., Boeckx, P., 2012. Soil nitrogen dynamics three years after a severe Araucaria–Nothofagus forest fire. Austral Ecology, 37, 153–163. https://doi.org/10.1111/j.1442-9993.2011.02258.x10.1111/j.1442-9993.2011.02258.x
  47. Robichaud, P.R., Lewis, S.A., Brown, R.E., Bone, E.D., Brooks, E.S., 2020. Evaluating post-wildfire logging-slash cover treatment to reduce hillslope erosion after salvage logging using ground measurements and remote sensing. Hydrological Processes, 34, 4431–4445. https://doi.org/10.1002/hyp.1388210.1002/hyp.13882
  48. Rodriguez-Cardona, B.M., Coble, A.A., Wymore, A.S., Kolosov, R., Podgorski, D.C., Zito, P., Spencer, R.G.M., Prokushkin, A.S., McDowell, W.H., 2020. Wildfires lead to decreased carbon and increased nitrogen concentrations in upland arctic streams. Scientific Reports, 10, 1–9.10.1038/s41598-020-65520-0725086532457538
  49. Salis, M., Giudice, L.D., Robichaud, P.R., Ager, A.A., Canu, A., Duce, P., Pellizzaro, G., Ventura, A., Alcasena-Urdiroz, F., Spano, D., Arca, B., Salis, M., Giudice, L.D., Robichaud, P.R., Ager, A.A., Canu, A., Duce, P., Pellizzaro, G., Ventura, A., Alcasena-Urdiroz, F., Spano, D., Arca, B., 2019. Coupling wildfire spread and erosion models to quantify post-fire erosion before and after fuel treatments. Int. J. Wildland Fire, 28, 687–703. https://doi.org/10.1071/WF1903410.1071/WF19034
  50. Scharenbroch, B.C., Nix, B., Jacobs, K.A., Bowles, M.L., 2012. Two decades of low-severity prescribed fire increases soil nutrient availability in a Midwestern, USA oak (Quercus) forest. Geoderma, 183, 80–91.10.1016/j.geoderma.2012.03.010
  51. Serrasolsas, I., Khanna, P.K., 1995. Changes in heated and autoclaved forest soils of S.E. Australia. II. Phosphorus and phosphatase activity. Biogeochemistry, 29, 25–41. https://doi.org/10.1007/BF0000259210.1007/BF00002592
  52. Shakesby, R.A., 2011. Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth-Science Reviews, 105, 71–100.10.1016/j.earscirev.2011.01.001
  53. Shrestha, B.M., Chen, H.Y.H., 2010. Effects of stand age, wildfire and clearcut harvesting on forest floor in boreal mixedwood forests. Plant Soil, 336, 267–277. https://doi.org/10.1007/s11104-010-0475-210.1007/s11104-010-0475-2
  54. Smithwick, E.A.H., Turner, M.G., Mack, M.C., Chapin, F.S., 2005. Postfire soil N cycling in northern conifer forests affected by severe, stand-replacing wildfires. Ecosystems, 8, 163–181. https://doi.org/10.1007/s10021-004-0097-810.1007/s10021-004-0097-8
  55. Soto, B., Diaz-Fierros, F., 1993. Interactions between plant ash leachates and soil. Int. J. Wildland Fire, 3, 207–216. https://doi.org/10.1071/wf993020710.1071/WF9930207
  56. Turner, M.G., Smithwick, E.A., Metzger, K.L., Tinker, D.B., Romme, W.H., 2007. Inorganic nitrogen availability after severe stand-replacing fire in the Greater Yellowstone ecosystem. Proceedings of the National Academy of Sciences, 104, 4782–4789.10.1073/pnas.0700180104182921517360349
  57. Úbeda, X., Lorca, M., Outeiro, L.R., Bernia, S., Castellnou, M., Úbeda, X., Lorca, M., Outeiro, L.R., Bernia, S., Castellnou, M., 2005. Effects of prescribed fire on soil quality in Mediterranean grassland (Prades Mountains, north-east Spain). Int. J. Wildland Fire, 14, 379–384. https://doi.org/10.1071/WF0504010.1071/WF05040
  58. Ulery, A.L., Graham, R.C., Amrhein, C., 1993. Wood-ash composition and soil pH following intense burning. Soil Science, 156, 358–364.10.1097/00010694-199311000-00008
  59. Valkó, O., Deák, B., Magura, T., Török, P., Kelemen, A., Tóth, K., Horváth, R., Nagy, D.D., Debnár, Z., Zsigrai, G., Kapocsi, I., Tóthmérész, B., 2016. Supporting biodiversity by prescribed burning in grasslands – A multi-taxa approach. Science of the Total Environment, 572, 1377–1384. https://doi.org/10.1016/j.scitotenv.2016.01.18410.1016/j.scitotenv.2016.01.18426852186
  60. Vega, J.A., Fontúrbel, T., Merino, A., Fernández, C., Ferreiro, A., Jiménez, E., 2013. Testing the ability of visual indicators of soil burn severity to reflect changes in soil chemical and microbial properties in pine forests and shrubland. Plant and Soil, 369, 73–91.10.1007/s11104-012-1532-9
  61. Wittenberg, L., Malkinson, D., Voogt, A., Leska, D., Argaman, E., Keesstra, S., 2011. The relative importance of soil water repellency in determining runoff-infiltration processes in burned Mediterranean forest soils. In: Proc. FESP III International Meeting of Fire Effects on Soil Properties, p. 110.
  62. Wondafrash, T.T., Sancho, I.M., Miguel, V.G., Serrano, R.E., 2005. Relationship between soil color and temperature in the surface horizon of Mediterranean soils: A laboratory study. Soil Science, 170, 495–503.10.1097/01.ss.0000175341.22540.93
  63. Zavala, L.M.M., de Celis Silvia, R., López, A.J., 2014. How wildfires affect soil properties. A brief review. Cuadernos de investigación geográfica/Geographical Research Letters, 311–331.10.18172/cig.2522
  64. Zema, D.A., 2021. Postfire management impacts on soil hydrology. Current Opinion in Environmental Science & Health, 21, 100252. https://doi.org/10.1016/j.coesh.2021.10025210.1016/j.coesh.2021.100252
  65. Zema, D.A., Carrà, B.G., Lucas-Borja, M.E., 2022. Exploring and modeling the short-term influence of soil properties and covers on hydrology of Mediterranean forests after prescribed fire and mulching. Hydrology, 9, 21. https://doi.org/10.3390/hydrology902002110.3390/hydrology9020021
  66. Zema, D.A., Nicotra, A., Tamburino, V., Zimbone, S.M., 2015. Performance assessment of collective irrigation in Water Users’ Associations of Calabria (Southern Italy). Irrigation and Drainage, 64, 314–325. https://doi.org/10.1002/ird.190210.1002/ird.1902
  67. Zema, D.A., Plaza-Alvarez, P.A., Xu, X., Carra, B.G., Lucas-Borja, M.E., 2021a. Influence of forest stand age on soil water repellency and hydraulic conductivity in the Mediterranean environment. Science of the Total Environment, 753, 142006.10.1016/j.scitotenv.2020.14200632890878
  68. Zema, D.A., Van Stan, J.T., Plaza-Alvarez, P.A., Xu, X., Carra, B.G., Lucas-Borja, M.E., 2021b. Effects of stand composition and soil properties on water repellency and hydraulic conductivity in Mediterranean forests. Ecohydrology, 14, e2276.10.1002/eco.2276
  69. Zhang, Y., Biswas, A., 2017. The effects of forest fire on soil organic matter and nutrients in boreal forests of North America: a review. In: Rakshit, A., Abhilash, P.C., Singh, H.B., Ghosh, S. (Eds.): Adaptive Soil Management: From Theory to Practices. Springer, pp. 465–476.10.1007/978-981-10-3638-5_21
DOI: https://doi.org/10.2478/johh-2022-0028 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 462 - 474
Submitted on: May 11, 2022
Accepted on: Sep 20, 2022
Published on: Nov 16, 2022
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Manuel Esteban Lucas-Borja, Cristina Fernández, Pedro Antonio Plaza-Alvarez, Bruno Gianmarco Carrà, Demetrio Antonio Zema, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.