Have a personal or library account? Click to login
The effects of satellite soil moisture data on the parametrization of topsoil and root zone soil moisture in a conceptual hydrological model Cover

The effects of satellite soil moisture data on the parametrization of topsoil and root zone soil moisture in a conceptual hydrological model

Open Access
|Aug 2022

References

  1. Adeyeri, O.E., Laux, P., Arnault, J., Lawin, A. E., Kunstmann, H., 2020. Conceptual hydrological model calibration using multi-objective optimization techniques over the trans-boundary Komadugu-Yobe basin, Lake Chad Area, West Africa. Journal of Hydrology: Regional Studies, 27, 100655. DOI: 10.1016/j.ejrh.2019.100655
  2. Ardia, D., Mullen, K., 2010. DEoptim: Differential Evolution Optimization in R. R package version 2.0-4, URL http://CRAN.R-project.org/package=DEoptim
  3. Beck, H.E., Pan, M., Miralles, D.G., Reichle, R.H., Dorigo, W. A., Hahn, S. et al., 2021. Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors. Hydrol. Earth Syst. Sci., 25, 1, 17–40. DOI: 10.5194/hess-25-17-2021
  4. Bergstrom, S., 1992. The HBV model - its structure and applications. Report No. 4. Swedish Meteorological and Hydro-logical Institute.
  5. Bomhof, R.H., Gärtner, F.R., Stiggelbout, A.M., et al., 2019. Key components of shared decision making models: a systematic review. BMJ Open, 9 12, e031763. DOI: 10.1136/bmjopen-2019-031763693710131852700
  6. Brocca, L., Melone, F., Moramarco, T., Morbidelli, R., 2009. Antecedent wetness conditions based on ERS scatterometer data. J. Hydrol., 2009, 364, 73–87.10.1016/j.jhydrol.2008.10.007
  7. Brocca, L., Ciabatta, L., Massari, C., Camici, S., Tarpanelli, A., 2017. Soil moisture for hydrological applications: Open questions and new opportunities. Water, 9, 2, 140. DOI: 10.3390/w9020140
  8. Ciupak, M., Ozga-Zielinski, B., Adamowski, J., Deo, R. C., Kochanek, K., 2019. Correcting satellite precipitation data and assimilating satellite-derived soil moisture data to generate ensemble hydrological forecasts within the HBV Rainfall-Runoff Model. Water, 11, 10, 2138. DOI: 10.3390/w11102138
  9. Demirel, M.C., Özen, A., Orta, S., Toker, E., Demir, H.K., Ekmekcioğlu, Ö. et al., 2019. Additional value of using satellite-based soil moisture and two sources of groundwater data for hydrological model calibration. Water, 11, 10, 2083. https://doi.org/10.3390/w11102083
  10. De Santis, D., Biondi, D., Crow, W.T., Camici, S., Modanesi, S., Brocca, L., Massari, C., 2021. Assimilation of satellite soil moisture products for river flow prediction: An extensive experiment in over 700 catchments throughout Europe. Water Resources Research, 57, e2021WR029643. https://doi.org/10.1029/2021WR029643
  11. Efstratiadis, A., Koutsoyiannis, D., 2010. One decade of multi-objective calibration approaches in hydrological modelling: a review. Hydrological Sciences Journal, 55, 1, 58–78. DOI: 10.1080/02626660903526292
  12. EODC, 2021. Product User Manual ASCAT DIREX SWI 0.5 km, v1.0.
  13. Fang, B., Lakshmi, V., 2014. Soil moisture at watershed scale: Remote sensing techniques. J. Hydrol., 516, 258–272.10.1016/j.jhydrol.2013.12.008
  14. Hahn, S., Wagner, W., Steele-Dunne, S., Vreugdenhil, M., Melzer, T., 2021. Improving ASCAT soil moisture retrievals with an enhanced spatially variable vegetation parameterization. IEEE Transactions on Geoscience and Remote Sensing, 59, 10, 8241–8256. https://doi.org/10.34726/1622
  15. Hiebl, J., Frei, C., 2016. Daily temperature grids for Austria since 1961 – Concept, creation and applicability. Theor. Appl. Clim., 124, 161–178.10.1007/s00704-015-1411-4
  16. Hiebl, J., Frei, C., 2017. Daily precipitation grids for Austria since 1961 – Development and evaluation of a spatial dataset for hydroclimatic monitoring and modelling. Theor. Appl. Clim., 132, 327–345.10.1007/s00704-017-2093-x
  17. Jadidoleslam, N., Mantilla, R., Krajewski, W.F., Goska, R., 2019. Investigating the role of antecedent SMAP satellite soil moisture, radar rainfall and MODIS vegetation on runoff production in an agricultural region. Journal of Hydrology, 579, 124210. DOI: 10.1016/j.jhydrol.2019.124210
  18. Jun, S., Park, J.H., Choi, HJ., Lee, Y.H., Lim, Y.J., Boo, K.O., Kang, H.S., 2021. Impact of soil moisture data assimilation on analysis and medium-range forecasts in an Operational Global Data Assimilation and Prediction System. Atmosphere, 12, 1089. https://doi.org/10.3390/atmos12091089
  19. Kim, H., Parinussa, R., Konings, A. G., Wagner, W., Cosh, M. H., Lakshmi, V. et al., 2018. Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products. Remote Sensing of Environment, 204, 260–275. DOI: 10.1016/j.rse.2017.10.026
  20. Kim, S., Zhang, R., Pham, H., Sharma, A., 2019. A review of satellite-derived soil moisture and its usage for flood estimation. Remote Sens. Earth Syst. Sci., 2, 4, 225–246. DOI: 10.1007/s41976-019-00025-7
  21. Kuban, M., Parajka, J., Tong, R., Pfeil, I., Vreugdenhil, M., Sleziak, P., Adam, B., Szolgay, J., Kohnová, S., Hlavcova, K., 2021. Incorporating advanced scatterometer surface and root zone soil moisture products into the calibration of a Conceptual Semi-Distributed Hydrological Model. Water, 13, 3366. https://doi.org/10.3390/w13233366
  22. Kundu, D., Vervoort, R.W., van Ogtrop, F.F., 2017. The value of remotely sensed surface soil moisture for model calibration using SWAT. Hydrol. Process., 31, 15, 2764–2780. DOI: 10.1002/hyp.11219
  23. Kosugi, K., 1994. Three-parameter lognormal distribution model for soil water retention. AGU, https://doi.org/10.1029/93WR02931
  24. Kosugi, K., 1996. Lognormal distribution model for unsaturated soil hydraulic properties. Water Resources Research, 32, 2697–2703.10.1029/96WR01776
  25. Le, M.H., Nguyen, B.Q., Pham, H.T., Patil, A., Do, H.X., Ramsankaran, R.A.A.J., Bolten, J.D., Lakshmi, V., 2022. Assimilation of SMAP products for improving streamflow simulations over tropical climate region – Is spatial information more important than temporal information? Remote Sensing, 14, 1607. https://doi.org/10.3390/rs14071607
  26. Li, Y., Grimaldi, S., Pauwels, V., Walker, R.N., Jeffrey P., 2018. Hydrologic model calibration using remotely sensed soil moisture and discharge measurements: The impact on predictions at gauged and ungauged locations. Journal of Hydrology, 557, 897–909. DOI: 10.1016/j.jhydrol.2018.01.013
  27. Lindstrom, G., Barbro J., Magnus, P., Marie, G., Sten, B., 1997. Development and test of the distributed HBV-96 hydrological model. Journal of Hydrology, 201, 1–4, 272–288. https://doi.org/10.1016/S0022-1694(97)00041-3
  28. Liu, W., Wang, J., Xu, F., Li, C., Xian, T., 2022. Validation of four satellite-derived soil moisture products using ground-based in situ observations over Northern China. Remote Sensing, 14, 6, 1419. DOI: 10.3390/rs14061419
  29. Loizu, J., Massari, C., Álvarez-Mozos, J., Tarpanelli, A., Brocca, L., Casalí, J., 2018. On the assimilation set-up of ASCAT soil moisture data for improving streamflow catchment simulation. Advances in Water Resources, 111, 86–104. DOI: 10.1016/j.advwatres.2017.10.034
  30. Mascaro, G., Ko, A., Vivoni, E.R., 2019. Closing the loop of satellite soil moisture estimation via scale invariance of hydrologic simulations. Scientific Reports, 9, 1, 16123. DOI: 10.1038/s41598-019-52650-3.683467431695120
  31. Massari, C., Brocca, L., Tarpanelli, A., Moramarco, T., 2015. Data assimilation of satellite soil moisture into rainfall-runoff modelling: A complex recipe? Remote Sensing, 7, 9, 11403–11433. DOI: 10.3390/rs70911403
  32. Meng, S., Xie, X., Liang, S., 2017. Assimilation of soil moisture and streamflow observations to improve flood forecasting with considering runoff routing lags. Journal of Hydrology, 550, 568–579. DOI: 10.1016/j.jhydrol.2017.05.024
  33. Monteil, C., Zaoui, F., Le Moine, N., Hendrickx, F., 2020. Multi-objective calibration by combination of stochastic and gradient-like parameter generation rules – the caRamel algorithm. Hydrol. Earth Syst. Sci., 24, 3189–3209. https://doi.org/10.5194/hess-24-3189-2020
  34. Mostafaie, A., Forootan, E., Safari, A., Schumacher, M., 2018. Comparing multi-objective optimization techniques to calibrate a conceptual hydrological model using in situ runoff and daily GRACE data. Comput. Geosci., 22, 3, 789–814. DOI: 10.1007/s10596-018-9726-8
  35. Mullen, K.M., Ardia, D., Gil, D.L., Windover, D., Cline, J., 2011. DEoptim: An R Package for Global Optimization by Differential Evolution. Journal of Statistical Software, 40, 6, 1–26. https://doi.org/10.18637/jss.v040.i06
  36. Muñoz-Sabater, J., Al Bitar, A., Brocca, L., 2016. Soil moisture retrievals based on active and passive microwave data: State-of-the-art and operational applications. In: Petropoulos, G.P., Srivastava, P., Kerr, Y. (Eds.): Satellite Soil Moisture Retrievals: Techniques and Applications. Elsevier: Amsterdam, The Netherlands, 18, pp. 351–378.10.1016/B978-0-12-803388-3.00018-8
  37. Naeimi, V., Scipal, K., Bartalis, Z., Hasenauer, S., Wagner, W., 2009. An improved soil moisture retrieval algorithm for ERS and METOP scatterometer observations. IEEE Trans. Geosci. Remote Sensing, 47, 7, 1999–2013. DOI: 10.1109/TGRS.2008.2011617
  38. Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I – A discussion of principles. Journal of Hydrology, 10, 3, 282–290. DOI: 10.1016/0022-1694(70)90255-6
  39. Nijzink, R.C., Almeida, S., Pechlivanidis, I.G., Capell, R., Gustafssons, D., Arheimer, B. et al., 2018. Constraining conceptual hydrological models with multiple information sources. Water Resour. Res., 54, 10, 8332–8362. DOI: 10.1029/2017WR021895
  40. Olofintoye, O., Ayanshola, A., Salami, A., Idrissiou, A., Iji, J., Adeleke, O., 2022. A study on the applicability of a Swat model in predicting the water yield and water balance of the Upper Ouémé catchment in the Republic of Benin. Slovak Journal of Civil Engineering, 30, 1, 57–66. https://doi.org/10.2478/sjce-2022-0007
  41. Parajka, J., Merz, R., Blöschl, G., 2003. Estimation of daily potential evapotranspiration for regional water balance modeling in Austria. In: 11th International Poster Day and Institute of Hydrology Open Day “Transport of Water, Chemicals and Energy in the Soil – Crop Canopy – Atmosphere System”. Slovak Academy of Sciences, Bratislava, pp. 299–306.
  42. Parajka, J., Merz, R., Blöschl, G., 2007. Uncertainty and multiple objective calibrations in regional water balance modeling: a case study in 320 Austrian catchments. Hydrol. Process., 21, 435–446. DOI: 10.1002/hyp.6253
  43. Parajka, J., Naeimi, V., Blöschl, G., Komma, J., 2009. Matching ERS scatterometer based soil moisture patterns with simulations of a conceptual dual layer hydrologic model over Austria. Hydrol. Earth Syst. Sci., 13, 259–271. https://doi.org/10.5194/hess-13-259-2009
  44. Paulik, C., Dorigo, W., Wagner, W., Kidd, R., 2014. Validation of the ASCAT Soil Water Index using in situ data from the International Soil Moisture Network. International Journal of Applied Earth Observation and Geoinformation, 30, 1–8. DOI: 10.1016/j.jag.2014.01.007
  45. Pfeil, I., Vreugdenhil, M., Hahn, S., Wagner, W., Strauss, P., Blöschl, G., 2018. Improving the seasonal representation of ASCAT soil moisture and vegetation dynamics in a temperate climate. Remote Sensing, 10, 1788. https://doi.org/10.3390/rs10111788
  46. Rajib, M.A., Venkatesh, M., Zhiqiang, Y., 2016. Multi-objective calibration of a hydrologic model using spatially distributed remotely sensed/in-situ soil moisture. Journal of Hydrology, 536, 2016, 192–207. ISSN 0022-1694. https://doi.org/10.1016/j.jhydrol.2016.02.037
  47. Storn, R., Price, K., 1997. Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341–359. https://doi.org/10.1023/A:1008202821328
  48. Sunwoo, W., Choi, M., 2017. Robust initial wetness condition framework of an event-based rainfall–runoff model using remotely sensed soil moisture. Water, 9, 2, 77. DOI: 10.3390/w9020077
  49. Sleziak, P., Szolgay, J., Hlavčová, K., Danko, M., Parajka, J., 2020. The effect of the snow weighting on the temporal stability of hydrologic model efficiency and parameters. Journal of Hydrology, 583, 124639. ISSN 0022-1694. https://doi.org/10.1016/j.jhydrol.2020.124639
  50. Steele-Dunne, S.C., Hahn, S., Wagner, W., Vreugdenhil, M., 2021. Towards including dynamic vegetation parameters in the EUMETSAT H SAF ASCAT soil moisture products. Remote Sensing, 13, 1463. https://doi.org/10.3390/rs13081463
  51. SWI, 2022.https://land.copernicus.eu/global/products/swi
  52. Széles, B., Parajka, J., Hogan, P., Silasari, R., Pavlin, L., Strauss, P., Blöschl, G., 2020. The added value of different data types for calibrating and testing a hydrologic model in a small catchment. Water Resources Research, 56, 10, e2019WR026153. DOI: 10.1029/2019WR026153759444733149373
  53. Tebbs, E., Gerard, F., Petrie, A., De Witte, E., 2016. Emerging and potential future applications of satellite-based soil moisture products. In: Petropoulos, G.P., Srivastava, P., Kerr, Y. (Eds.): Satellite Soil Moisture Retrievals: Techniques and Applications. Elsevier: Amsterdam, The Netherlands, 19, pp. 379–400.10.1016/B978-0-12-803388-3.00019-X
  54. Thornton, J.M., Mariethoz, G., Brauchli, T.J., Brunner, P., 2021. Efficient multi-objective calibration and uncertainty analysis of distributed snow simulations in rugged alpine terrain. Journal of Hydrology, 598, 126–241. DOI: 10.1016/j.jhydrol.2021.126241
  55. Tian, S., Renzullo, L.J., Pipunic, R.C., Lerat, J., Sharples, W., Donnelly, C., 2021. Satellite soil moisture data assimilation for improved operational continental water balance prediction. Hydrol. Earth Syst. Sci., 25, 4567–4584. https://doi.org/10.5194/hess-25-4567-2021, 202110.5194/hess-25-4567-2021
  56. Tong, R., Parajka, J., Salentinig, A., Pfeil, I., Komma, J., Széles, B. et al., 2021. The value of ASCAT soil moisture and MODIS snow cover data for calibrating a conceptual hydrologic model. Hydrol. Earth Syst. Sci., 25, 1389–1410. DOI: 10.5194/hess-25-1389-2021
  57. Tramblay, Y., Bouaicha, R., Brocca, L., Dorigo, W., Bouvier, C., Camici, S., Servat, E., 2012. Estimation of antecedent wetness conditions for flood modelling in northern Morocco. Hydrol. Earth Syst. Sci., 16, 4375–4386.10.5194/hess-16-4375-2012
  58. Vachaud, G., Passerat De Silans, A., Balabanis, P., Vauclin, M., 1985. Temporal stability of spatially measured soil water probability density function. Soil Sci. Soc. Am. J., 49, 4, 822–828. DOI: 10.2136/sssaj1985.03615995004900040006x
  59. Viglione, A., Parajka, J., 2020. Lumped/Semi-Distributed Hydrological Model for Education Purposes. http://CRAN.R-project.org/package=TUWmodel, published 2020-02-26, License: GPL-2 | GPL-3, accessed 07/04/2022.
  60. Viglione, A., Parajka, J., Rogger, M., Salinas, J.L., Laaha, G., Sivapalan, M., Blöschl, G., 2013. Comparative assessment of predictions in ungauged basins – Part 3: Runoff signatures in Austria. Hydrol. Earth Syst. Sci., 17, 2263–2279, https://doi.org/10.5194/hess-17-2263-2013
  61. Wagner, W., Lemoine, G., Rott, H., 1999. A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens. Environ., 70, 2, 191–207.10.1016/S0034-4257(99)00036-X
  62. Wagner, W., Blöschl, G., Pampaloni, P., Calvet, J.C., Bizzarri, B., Wigneron, J.P., Kerr, Y., 2007. Operational readiness of microwave remote sensing of soil moisture for hydrologic applications. Hydrol. Res., 38, 1–20.10.2166/nh.2007.029
  63. Wagner, W., Pathe, C., Doubkova, M., Sabel, D., Bartsch, A., Hasenauer, S., Blöschl, G., Scipal, K., Martínez-Fernández, J., Löw, A., 2008. Temporal stability of soil moisture and radar backscatter observed by the advanced synthetic aperture radar (ASAR). Sensors, 8, 1174–1197. https://doi.org/10.3390/s80201174392750127879759
  64. Wanders, N., Bierkens, M.F.P., de Jong, S.M., de Roo, A., Karssenberg, D., 2014. The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models. Water Resour. Res., 50, 8, 6874–6891. DOI: 10.1002/2013WR014639
  65. Xiong, L., Zeng, L., 2019. Impacts of introducing remote sensing soil moisture in calibrating a distributed hydrological model for streamflow simulation. Water, 11, 4, 666. DOI: 10.3390/w11040666
  66. Zhang, Y., Schaap, M.G., Zha, Y., 2018. A high-resolution global map of soil hydraulic properties produced by a hierarchical parameterization of a physically based water retention model. Water Res., 54, 9774–9790.10.1029/2018WR023539
DOI: https://doi.org/10.2478/johh-2022-0021 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 295 - 307
Submitted on: Jul 6, 2022
Accepted on: Jul 23, 2022
Published on: Aug 23, 2022
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Martin Kuban, Juraj Parajka, Rui Tong, Isabella Greimeister-Pfeil, Mariette Vreugdenhil, Jan Szolgay, Silvia Kohnova, Kamila Hlavcova, Patrik Sleziak, Adam Brziak, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.