Have a personal or library account? Click to login
Impact of reconfiguration on the flow downstream of a flexible foliated plant Cover

Impact of reconfiguration on the flow downstream of a flexible foliated plant

Open Access
|Aug 2022

References

  1. Aberle, J., Järvelä, J., 2013. Flow resistance of emergent rigid and flexible floodplain vegetation. Journal of Hydraulic Research, 51, 1, 33–45. https://doi.org/10.1080/00221686.2012.754795
  2. Ackerman, J.D., Okubo, A., Okubot, A., 1993. Reduced Mixing in a Marine Macrophyte Canopy. Functional Ecology, 7, 3, 305–309.10.2307/2390209
  3. Biggs, H.J., Nikora, V.I., Gibbins, C.N., Cameron, S.M., Papadopoulos, K., Stewart, M., Fraser, S., Vettori, D., Savio, M., O’Hare, M.T., Kucher, M., Hicks, D.M., 2019. Flow interactions with an aquatic macrophyte: a field study using stereoscopic particle image velocimetry. Journal of Ecohydraulics, 4, 2, 113–130. https://doi.org/10.1080/24705357.2019.1606677
  4. Boothroyd, R.J., Hardy, R.J., Warburton, J., Marjoribanks, T.I., 2017. Modeling complex flow structures and drag around a submerged plant of varied posture. Water Resources Research, 53, 4, 2877–2901. https://doi.org/10.1002/2016WR020186
  5. Bouma, T.J., van Duren, L.A., Temmerman, S., Claverie, T., Blanco-Garcia, A., Ysebaert, T., Herman, P.M.J., 2007. Spatial flow and sedimentation patterns within patches of epibenthic structures: Combining field, flume and modelling experiments. Continental Shelf Research, 27, 8, 1020–1045. https://doi.org/10.1016/j.csr.2005.12.019
  6. Box, W., Västilä, K., Järvelä, J., 2019. The interplay between flow field, suspended sediment concentration, and net deposition in a channel with flexible bank vegetation. Water, 11, 11. https://doi.org/10.3390/w11112250
  7. Caroppi, G., Gualtieri, P., Fontana, N., Giugni, M., 2020. Effects of vegetation density on shear layer in partly vegetated channels. Journal of Hydro-Environment Research, 30, 82–90. https://doi.org/10.1016/j.jher.2020.01.008
  8. Caroppi, G., Järvelä, J., 2022. Shear layer over floodplain vegetation with a view on bending and streamlining effects. Environmental Fluid Mechanics, 22, 587–618. https://doi.org/10.1007/s10652-022-09841-w
  9. Caroppi, G., Västilä, K., Järvelä, J., Rowiński, P.M., Giugni, M., 2019. Turbulence at water-vegetation interface in open channel flow: Experiments with natural-like plants. Advances in Water Resources, 127, 180–191. https://doi.org/10.1016/j.advwatres.2019.03.013
  10. Caroppi, G., Västilä, K., Gualtieri, P., Järvelä, J., Giugni, M., Rowiński, P.M., 2021. Comparison of flexible and rigid vegetation induced shear layers in partly vegetated Resources Research, 57, 3. https://doi.org/10.1029/2020WR028243
  11. Caroppi, G., Västilä, K., Järvelä, J., Lee, C., Ji, U., Kim, H.S., Kim, S., 2022. Flow and wake characteristics associated with riparian vegetation patches: Results from field-scale experiments. Hydrological Processes, 36, 2. https://doi.org/10.1002/hyp.14506
  12. Chen, Z., Ortiz, A., Zong, L., Nepf, H., 2012. The wake structure behind a porous obstruction and its implications for deposition near a finite patch of emergent vegetation. Water Resources Research, 48, 9. https://doi.org/10.1029/2012WR012224
  13. Elliott, S.H., Tullos, D.D., Walter, C., 2019. Physical modeling of the feedbacks between a patch of flexible Reed Canarygrass (Phalaris arundinacea), wake hydraulics, and downstream deposition. Environmental Fluid Mechanics, 19, 1, 255–277. https://doi.org/10.1007/s10652-018-9622-8
  14. Gurnell, A., 2015. Plants as river system engineers: Further comments. Earth Surface Processes and Landforms, 40, 1, 135–137. https://doi.org/10.1002/esp.3671
  15. Harder, D.L., Speck, O., Hurd, C.L., Speck, T., 2004. Reconfiguration as a prerequisite for survival in highly unstable flow-dominated habitats. Journal of Plant Growth Regulation, 23, 2, 98–107. https://doi.org/10.1007/s00344-004-0043-1
  16. Hu, Z., Lei, J., Liu, C., Nepf, H., 2018. Wake structure and sediment deposition behind models of submerged vegetation with and without flexible leaves. Advances in Water Resources, 118, 28–38. https://doi.org/10.1016/j.advwatres.2018.06.001
  17. Jalonen, J., Järvelä, J., 2014. Estimation of drag forces caused by natural woody vegetation of different scales. Journal of Hydrodynamics, 26, 4, 608–623. https://doi.org/10.1016/S1001-6058(14)60068-8
  18. Järvelä, J., 2005. Effect of submerged flexible vegetation on flow structure and resistance. Journal of Hydrology, 307, 1–4, 233–241. https://doi.org/10.1016/j.jhydrol.2004.10.013
  19. Jesson, M.A., Bridgeman, J., Sterling, M., 2015. Novel software developments for the automated post-processing of high volumes of velocity time-series. Advances in Engineering Software, 89, 36–42. https://doi.org/10.1016/j.advengsoft.2015.06.007
  20. Jesson, M., Sterling, M., Bridgeman, J., 2013. Despiking velocity time-series-Optimisation through the combination of spike detection and replacementmethods. Flow Measurement and Instrumentation, 30, 45–51. https://doi.org/10.1016/j.flowmeasinst.2013.01.007
  21. King, A.T., Tinoco, R.O., Cowen, E.A., 2012. A k-ε turbulence model based on the scales of vertical shear and stem wakes valid for emergent and submerged vegetated flows. Journal of Fluid Mechanics, 701, 1–39. https://doi.org/10.1017/jfm.2012.113
  22. Kubrak, E., Kubrak, J., Rowiński, P.M., 2008. Vertical velocity distributions through and above submerged, flexible vegetation. Hydrological Sciences Journal, 53, 4, 905–920. https://doi.org/10.1623/hysj.53.4.905
  23. Lee, J.K., Roig, L.C., Jenter, H.L., Visser, H.M., 2004. Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades. Ecological Engineering, 22, 4–5, 237–248.10.1016/j.ecoleng.2004.05.001
  24. Łoboda, A.M., Bialik, R.J., Karpiński, M., Przyborowski, Ł., 2018. Seasonal changes in the biomechanical properties of Elodea canadensis Michx. Aquatic Botany, 147, 43–51. https://doi.org/10.1016/j.aquabot.2018.03.006
  25. Łoboda, A.M., Karpiński, M., Bialik, R.J., 2018. On the relationship between aquatic plant stem characteristics and drag force: Is a modeling application possible? Water, 10, 5. https://doi.org/10.3390/w10050540
  26. Miler, O., Albayrak, I., Nikora, V., O’Hare, M., 2012. Biomechanical properties of aquatic plants and their effects on plant-flow interactions in streams and rivers. Aquatic Sciences, 74, 1, 31–44. https://doi.org/10.1007/s00027-011-0188-5
  27. Mossa, M., Ben Meftah, M., De Serio, F., Nepf, H.M., 2017. How vegetation in flows modifies the turbulent mixing and spreading of jets. Scientific Reports, 7, 1, 1–14. https://doi.org/10.1038/s41598-017-05881-1
  28. Nepf, H.M., Mugnier, C.G., Zavistoski, R.A., 1997. The effects of vegetation on longitudinal dispersion. Estuarine, Coastal and Shelf Science, 44, 6, 675–684.10.1006/ecss.1996.0169
  29. Nikora, V., 2010. Hydrodynamics of Aquatic Ecosystems: An interface between ecology, biomechanics and environmental fluid mechanics. River Research and Applications, 26, 4, 367–384. https://doi.org/10.1002/rra.1291
  30. Nikora, V., Larned, S., Nikora, N., Debnath, K., Cooper, G., Reid, M., 2008. Hydraulic resistance due to aquatic vegetation in small streams: field study. Journal of Hydraulic Engineering, 134, 9, 1326–1332.10.1061/(ASCE)0733-9429(2008)134:9(1326)
  31. Nikora, V., Cameron, S., Albayrak, I., Miler, O., Nikora, N., Siniscalchi, F., Stewart, M., O’Hare, M., Rodi, W., 2012. Flow-biota interactions in aquatic systems: scales, mechanisms, and challenges. In: Rodi, W., Uhlmann, M. (Eds.): Environmental Fluid Mechanics: Memorial Volume in Honour of Professor Gerhard H. Jirka. IAHR Monographs, Chapter 11.
  32. Nikora, V.I., Pearson, C.P., Shankar, U., 1999. Scaling properties in landscape patterns: New Zealand experience. Landscape Ecology, 14, 17–33.10.1023/A:1008077914643
  33. Poggi, D., Krug, C., Katul, G.G., 2009. Hydraulic resistance of submerged rigid vegetation derived from first-order closure models. Water Resources Research, 45, 10, 1–14. https://doi.org/10.1029/2008WR007373
  34. Proust, S., Fernandes, J.N., Leal, J.B., Rivière, N., Peltier, Y., 2017. Mixing layer and coherent structures in compound channel flows: Effects of transverse flow, velocity ratio, and vertical confinement. Water Resources Research, 53, 4, 3387–3406. https://doi.org/10.1002/2016WR019873
  35. Przyborowski, Ł., Łoboda, A.M., Bialik, R.J., Västilä, K., 2019. Flow field downstream of individual aquatic plants— Experiments in a natural river with Potamogeton crispus L. and Myriophyllum spicatum L. Hydrological Processes, 33, 9, 1324–1337. https://doi.org/10.1002/hyp.13403
  36. Pugliese, F., Caroppi, G., Zingraff-Hamed, A., Lupp, G., Gerundo, C., 2022. Assessment of NBSs effectiveness for flood risk management: The Isar River case study. Journal of Water Supply: Research and Technology-Aqua, 71, 1, 42–61. https://doi.org/10.2166/aqua.2021.101
  37. Puijalon, S., Bouma, T.J., Douady, C.J., van Groenendael, J., Anten, N.P.R., Martel, E., Bornette, G., 2011. Plant resistance to mechanical stress: Evidence of an avoidance-tolerance trade-off. New Phytologist, 191, 4, 1141–1149. https://doi.org/10.1111/j.1469-8137.2011.03763.x
  38. Rowiński, P.M., Västilä, K., Aberle, J., Järvelä, J., Kalinowska, M.B., 2018. How vegetation can aid in coping with river management challenges: A brief review. Ecohydrology and Hydrobiology, 18, 4, 345–354. https://doi.org/10.1016/j.ecohyd.2018.07.003
  39. Shadaram, A., Fard, A., Rostamy, N., 2008. Experimental study of near wake flow behind a rectangular cylinder. American Journal of Applied Sciences, 5, 8, 917–926.10.3844/ajassp.2008.917.926
  40. Siniscalchi, F., Nikora, V., 2013. Dynamic reconfiguration of aquatic plants and its interrelations with upstream turbulence and drag forces. Journal of Hydraulic Research, 51, 1, 46–55. https://doi.org/10.1080/00221686.2012.743486
  41. Stoesser, T., Kim, S.J., Diplas, P., 2010. Turbulent flow through idealized emergent vegetation. Journal of Hydraulic Engineering, 136, 12, 1003–1017. https://doi.org/10.1061/(asce)hy.1943-7900.0000153
  42. Stone, B.M., Shen, H.T., 2002. Hydraulic resistance of flow in channels with cylindrical roughness. Journal of Hydraulic Engineering, 128, 5, 500–506. https://doi.org/10.1061/(asce)0733-9429(2002)128:5(500)
  43. Sukhodolova, T.A., Sukhodolov, A.N., 2012. Vegetated mixing layer around a finite-size patch of submerged plants: 1. Theory and field experiments. Water Resources Research, 48, 10. https://doi.org/10.1029/2011WR011804
  44. Tabacchi, E., Lambs, L., Guilloy, H., Planty-Tabacchi, A.-M., Muller, E., Décamps, H., 2000. Impacts of riparian vegetation on hydrological processes. Hydrol. Process., 14, 2959–2976.10.1002/1099-1085(200011/12)14:16/17<2959::AID-HYP129>3.0.CO;2-B
  45. Tanino, Y., Nepf, H.M., 2007. Experimental investigation of lateral dispersion in aquatic canopies. In: Proc. 32nd Congress of IAHR.
  46. Tanino, Y., Nepf, H.M., 2008. Laboratory investigation of mean drag in a random array of rigid, emergent cylinders. Journal of Hydraulic Engineering, 134, 1, 34–41. https://doi.org/10.1061/(asce)0733-9429(2008)134:1(34)
  47. Termini, D., 2015. Flexible vegetation behaviour and effects on flow conveyance: experimental observations. International Journal of River Basin Management, 13, 4, 401–411. https://doi.org/10.1080/15715124.2015.1012519
  48. Tinoco, R.O., Coco, G., 2016. A laboratory study on sediment resuspension within arrays of rigid cylinders. Advances in Water Resources, 92, 1–9. https://doi.org/10.1016/j.advwatres.2016.04.003
  49. Tritton, D.J., 1977. Physical Fluid Dynamics. Springer Netherlands. https://doi.org/10.1007/978-94-009-9992-3
  50. Västilä, K., Järvelä, J., 2014. Modeling the flow resistance of woody vegetation using physically based properties of the foliage and stem. Water Resources Research, 50, 1, 229–245. https://doi.org/10.1002/2013WR013819
  51. Vogel, S., 1989. Drag and reconfiguration of broad leaves in high winds. Journal of Experimental Botany, 40, 8, 941–948. https://doi.org/10.1093/jxb/40.8.941
  52. Weissteiner, C., Jalonen, J., Järvelä, J., Rauch, H.P., 2015. Spatial-structural properties of woody riparian vegetation with a view to reconfiguration under hydrodynamic loading. Ecological Engineering, 85, 85–94. https://doi.org/10.1016/j.ecoleng.2015.09.053
  53. White, B.L., Nepf, H.M., 2008. A vortex-based model of velocity and shear stress in a partially vegetated shallow channel. Water Resources Research, 44, 1. https://doi.org/10.1029/2006WR005651
  54. Whittaker, P., Wilson, C.A.M.E., Aberle, J., 2015. An improved Cauchy number approach for predicting the drag and reconfiguration of flexible vegetation. Advances in Water Resources, 83, 28–35. https://doi.org/10.1016/j.advwatres.2015.05.005
  55. Wilkerson, G.V., 2007. Flow through trapezoidal and rectangular channels with rigid cylinders. Journal of Hydraulic Engineering, 133, 5, 521–533.10.1061/(ASCE)0733-9429(2007)133:5(521)
  56. Wygnanski, I., Champagne, A.N.F., Marasli, D.B., 1986. On the large-scale structures in two-dimensional, small-deficit, turbulent wakes. Journal of Fluid Mechanics, 168, 31–71. https://doi.org/10.1017/S0022112086000289
  57. Xu, Y., Nepf, H., 2020. Measured and predicted turbulent kinetic energy in flow through emergent vegetation with real plant morphology. Water Resources Research, 56, 12, 1–20. https://doi.org/10.1029/2020WR027892
  58. Yagci, O., Tschiesche, U., Kabdasli, M.S., 2010. The role of different forms of natural riparian vegetation on turbulence and kinetic energy characteristics. Advances in Water Resources, 33, 5, 601–614. https://doi.org/10.1016/j.advwatres.2010.03.008
  59. Yagci, O., Celik, M.F., Kitsikoudis, V., Ozgur Kirca, V.S., Hodoglu, C., Valyrakis, M., Duran, Z., Kaya, S., 2016. Scour patterns around isolated vegetation elements. Advances in Water Resources, 97, 251–265. https://doi.org/10.1016/j.advwatres.2016.10.002
  60. Yager, E.M., Schmeeckle, M.W., 2013. The influence of vegetation on turbulence and bed load transport. Journal of Geophysical Research: Earth Surface, 118, 3, 1585–1601. https://doi.org/10.1002/jgrf.20085
  61. Zong, L., Nepf, H., 2012. Vortex development behind a finite porous obstruction in a channel. Journal of Fluid Mechanics, 691, 368–391. https://doi.org/10.1017/jfm.2011.479
DOI: https://doi.org/10.2478/johh-2022-0017 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 357 - 375
Submitted on: Nov 18, 2021
Accepted on: Jun 9, 2022
Published on: Aug 23, 2022
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Marco Maio, Gustavo Marini, Nicola Fontana, Paola Gualtieri, Gerardo Caroppi, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.