Have a personal or library account? Click to login
How various mulch materials can affect the soil hydro-physical properties Cover

How various mulch materials can affect the soil hydro-physical properties

Open Access
|Aug 2022

References

  1. Al-Shammary, A.A.G., Kouzani, A., Gyasi-Agyei, Y., Gates, W., Rodrigo-Comino, J., 2020. Effects of solarisation on soil thermal-physical properties under different soil treatments: a review. Geoderma, 363, 114137.10.1016/j.geoderma.2019.114137
  2. Bang-Andreasen, T., Nielsen, J.T., Voriskova, J., Heise, J., Rønn, R., Kjøller, R., Hansen, H.C.B., Jacobsen, C.S., 2017. Wood ash induced pH changes strongly affect soil bacterial numbers and community composition. Front. Microbiol., 8, 1400.10.3389/fmicb.2017.01400553239628804476
  3. Dane, J.H., Hopmans, J.W., 2002. Water retention and storage. In: Dane, J.H., Topp, G.C. (Eds.): Methods of Soil Analysis. Part 4. Physical Methods. SSSA Book Series No. 5. Soil Science Society of America Madison USA. ISBN: 0–89118–841–X.10.2136/sssabookser5.4
  4. Dane, J.H., Topp, G.C., 2002. Methods of Soil Analysis. Part 4. Physical Methods. SSSA, Madison, WI, 1692 p.10.2136/sssabookser5.4
  5. Dexter, A.R, Czyz, E.A., 2007. Application of S–theory in study of soil physical degradation and its consequences. Land Degrad. Dev., 18, 369–381.10.1002/ldr.779
  6. Dexter, A.R., 2004a. Soil physical quality Part I. Theory effect of soil texture density and organic matter and effect on root growth. Geoderma, 120, 201–214.10.1016/j.geoderma.2003.09.004
  7. Dexter, A.R., 2004b. Soil physical quality Part II. Friability tillage tilth and hard–setting. Geoderma, 120, 215–226.10.1016/j.geoderma.2003.09.005
  8. Dexter, A.R., 2004c. Soil physical quality Part III. Unsaturated hydraulic conductivity and general conclusions about S– theory. Geoderma, 120, 227–239.10.1016/j.geoderma.2003.09.006
  9. Dissanayake, P.D., Palansooriya, K.N., Sang, M.K., Oh, D.X., Park, J., Hwang, S.Y., Igalavithana, A.D., Gu, C., Ok, Y.S., 2022. Combined effect of biochar and soil moisture on soil chemical properties and microbial community composition in microplastic-contaminated agricultural soil. Soil Use Manag., 38, 1–13. https://doi.org/10.1111/sum.12804.
  10. Gardner, W.R., 1958. Some steady state solutions of unsaturated moisture flow equations with application to evaporation from a water table. Soil Sci., 85, 228–232.10.1097/00010694-195804000-00006
  11. Fér, M., Kodešová, R., Hroníková, S., Nikodem, A., 2020. The effect of 12-year ecological farming on the soil hydraulic properties and repellency index. Biologia, 75, 795–798.10.2478/s11756-019-00373-1
  12. Fér, M., Kodešová, R., Nikodem, A., Jelenová, K., Klement, A., 2018. Influence of soil–water content on CO2 efflux within the elevation transect heavily impacted by erosion. Ecohydrology, 11, 6, e1989.10.1002/eco.1989
  13. Fér, M., Kodešová, R., Nikodem, A., Jirků, V., Jakšík, O., Němeček, K., 2016. The impact of the permanent grass cover or conventional tillage on hydraulic properties of Haplic Cambisol developed on paragneiss substrate. Biologia, 71, 10, 1144–1150.10.1515/biolog-2016-0133
  14. Hlaváčiková, H., Novák, V., Kameyama, K., Brezianská, K., Rodný, M., Vitková, J., 2019. Two types of biochars: one made from sugarcane bagasse, other one produced from paper fiber sludge and grain husks and their effects on water retention. Soil Water Res., 14, 2, 67–75.10.17221/15/2018-SWR
  15. Iovino, M., Pekárová, P., Hallett, D.P., Pekár, J., Lichner, Ľ., Mataix-Solera, J., Alagna, V., Walsh, R., Raffan, A., Schacht, K., Rodný, M., 2018. Extent and persistence of soil water repellency induced by pines in different geographic regions. J. Hydrol. Hydromech., 66, 4, 360–368.10.2478/johh-2018-0024
  16. ISO 10390, 2005. International Organization of Standardization, 2005. Soil Quality - Determination of pH.
  17. IUSS, 2014. World Reference Base for Soil Resources 2014. World Soil Resources Reports No. 106. FAO, Rome.
  18. Jirků, V., Kodešová, R., Nikodem, A., Mühlhanselová, M., Žigová, A., 2013. Temporal variability of structure and hydraulic properties of topsoil of three soil types. Geoderma, 204–205, 43–58.10.1016/j.geoderma.2013.03.024
  19. Kader, M.A., Senge, M., Mojid, M.A., Nakamura, K., 2017. Mulching type-induced soil moisture and temperature regimes and water use efficiency of soybean under rain-fed condition in central Japan. Int. Soil Water Conserv. Res., 5, 302–308.10.1016/j.iswcr.2017.08.001
  20. Kasirajan, S., Ngouajio, M., 2012. Polyethylene and biodegradable mulches for agricultural applications: a review. Agron. Sustain. Dev., 32, 501–529.10.1007/s13593-011-0068-3
  21. Kodešová, R., Fér, M., Klement, A., Nikodem, A., Teplá, D., Neuberger, P., Bureš, P., 2014. Impact of various surface covers on water and thermal regime of Technosol. J. Hydrol., 519, 2272–2288.10.1016/j.jhydrol.2014.10.035
  22. Kodešová, R., Šimůnek, J., Nikodem, A., Jirků, V., 2010. Estimation of parameters of the radially-symmetric dual-permeability model using tension disc infiltrometer and Guelph permeameter experiments. Vadose Zone J., 9, 213–225.10.2136/vzj2009.0069
  23. Kodešová, R., Jirků, V., Kodeš, V., Mühlhanselová, M., Nikodem, A., Žigová, A., 2011. Soil structure and soil hydraulic properties of Haplic Luvisol used as arable land and grassland. Soil Till. Res., 111, 2, 154–161.10.1016/j.still.2010.09.007
  24. Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263.10.1127/0941-2948/2006/0130
  25. Loeppert, R., Suarez, D., 1996. Carbonate and Gypsum. Methods Soil Anal. Part 3-Chemical Methods. In: SSSA B, Ser. No. 5, pp. 437e475.10.2136/sssabookser5.3.c15
  26. Meter Group AG, 2020. Mini Disk Infiltrometer. Mettlacher Straße 8, München.
  27. Nikodem, A., Kodešová, R., Fér, M., Klement, A., 2021. Variability of topsoil hydraulic conductivity along the hillslope transects delineated in four areas strongly affected by soil erosion. J. Hydrol. Hydromech., 69, 2, 220–231.10.2478/johh-2021-0008
  28. Nimmo, J.R., Perkins, K.S., 2002. Aggregate stability and size distribution. In: Dane, J.H., Topp, G.C. (Eds.): Methods of Soil Analysis, Part 4. Physical Methods. SSSA, Madison, WI, pp. 317–328.10.2136/sssabookser5.4.c14
  29. Nzeyimana, I., Hartemink, A.E, Ritsema, C., Stroosnijder, L., Lwanga, E.H., Geissen, V., 2017. Mulching as a strategy to improve soil properties and reduce soil erodibility in coffee farming systems of Rwanda. Catena, 149, 43–51.10.1016/j.catena.2016.08.034
  30. Pavlů, L., Kodešová, R., Fér, M., Nikodem, A., Němec, F., Prokeš, R., 2021. The impact of various mulch types on soil properties controlling water regime of the Haplic Fluvisol. Soil Till. Res., 205, 104748.10.1016/j.still.2020.104748
  31. Pekárová, P., Pekár, J., Lichner, Ľ., 2015. A new method for estimating soil water repellency index. Biologia, 70, 1450–1455.10.1515/biolog-2015-0178
  32. Philip, J.R., 1957. The theory of infiltration: 1. The infiltration equation and its solution. Soil Sci 83, 345–358.10.1097/00010694-195705000-00002
  33. Qu, B., Liu, Y., Sun, X., Li, S., Wang, X., Xiong, K., Yun, B., Zhang, H., 2019. Effect of various mulches on soil physico– chemical properties and tree growth (Sophora japonica) in urban tree pits. PLoS ONE, 14, 2, e0210777.10.1371/journal.pone.0210777636496330726253
  34. Rees, H.W., Chow, T.L., Loro, P.J., Lavoie, J., Monteith, J.O., Blaauw, A., 2002. Hay mulching to reduce runoff and soil loss under intensive potato production in northwestern New Brunswick, Canada. Can. J. Soil Sci., 82, 2, 249–258.10.4141/S01-055
  35. Reynolds, W.D., Elrick, D.E., 1991. Determination of hydraulic conductivity using a tension infiltrometer. Soil Sci. Soc. Am. J., 55, 633–639.10.2136/sssaj1991.03615995005500030001x
  36. Rhoades, J.D., 1996. Salinity: electrical conductivity and total dissolved aolids. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loepert, R.H., Soltanpour, P.N., Tabatabai, M.A. (Eds.), Methods of Soil Analysis. Part 3. Chemical Methods. SSSA, Madison, WI, pp. 417–435.10.2136/sssabookser5.3.c14
  37. Sándor, R., Iovino, M., Lichner, L., Alagna, V., Forster, D., Fraser, M., Kollár, J., Šurda, P., Nagy, V., Szabó, A., Fodor, N., 2021. Impact of climate, soil properties and grassland cover on soil water repellency. Geoderma, 383, 114780.10.1016/j.geoderma.2020.114780
  38. Skjemstad, J., Baldock, J.A., 2008. Total and organic carbon. In: Carter, M. (Ed.): Soil Sampling and Methods of Analysis, 2nd ed. CRC Press, Boca Raton, FL, USA, pp. 225–238.10.1201/9781420005271.ch21
  39. Soilmoisture Equipment Corp., 2009. 15 Bar pressure plate extractor operating instructions. Soilmoisture Equipment Corp., Santa Barbara, CA.
  40. Šurda, P., Lichner, Ľ., Kollár, J., Zvala, A., Igaz, D., 2021. Evaluation of soil properties in variously aged Scots pine plantations established on sandy soil. J. Hydrol. Hydro-mech., 69, 3, 347–355.10.2478/johh-2021-0012
  41. Thai, S., Davídek, T., Pavlů, L., 2022. Causes clarification of the soil aggregates stability on mulched soil. Soil Water Res., 17, 2, 91–99.10.17221/151/2021-SWR
  42. Toková, L., Hološ, S., Šurda, P., Kollár, J., Lichner, Ľ., 2022. Impact of duration of land abandonment on infiltration and surface runoff in acidic sandy soil. Agriculture, 12, 168.10.3390/agriculture12020168
  43. van Genuchten, M.Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 5, 892–898.10.2136/sssaj1980.03615995004400050002x
  44. Upton, G., Cook, I., 2008. A Dictionary of Statistics, 2nd ed. rev. Oxford University Press, Oxford.10.1093/acref/9780199541454.001.0001
  45. van Genuchten, M.Th., Leij, F.J., Yates, S.R., 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. EPA report 600/2–91/065. U.S. Salinity Laboratory, USDA-ARS.
  46. Wang, Q., Liu, X., Li, J., Yang, X., Guo, Z., 2021. Straw application and soil organic carbon change: A meta-analysis. Soil Water Res., 16, 2, 112–120.10.17221/155/2020-SWR
  47. Watson, K.W., Luxmoore, R.J., 1986. Estimating macroporosity in a forest watershed by use of a tension infiltrometer. Soil Sci. Soc. Am. J., 50, 578–582.10.2136/sssaj1986.03615995005000030007x
  48. Wooding, R.A., 1968. Steady infiltration from a shallow circular pond. Water Resour. Res., 4, 1259–1273.10.1029/WR004i006p01259
  49. Yang, Y., Li, P., Jiao, J., Yang, Z., Lv, M., Li, Y., Zhou, Ch., Wang, Ch., He, Z., Liu, Y., Song, S., 2020. Renewable sourced biodegradable mulches and their environment impact. Sci. Hortic., 268, 109375.10.1016/j.scienta.2020.109375
  50. Zádorová, T., Žížala, D., Penížek, V., Vaněk, A., 2020. Harmonisation of a large-scale historical database with the actual Czech soil classification system. Soil Water Res., 15, 2, 101–115.10.17221/41/2019-SWR
  51. Zhang, R., 1997. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Sci. Soc. Am. J., 61, 1024–1030.10.2136/sssaj1997.03615995006100040005x
DOI: https://doi.org/10.2478/johh-2022-0016 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 269 - 275
Submitted on: Jun 6, 2022
Accepted on: Jun 22, 2022
Published on: Aug 23, 2022
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Miroslav Fér, Antonín Nikodem, Sára Trejbalová, Aleš Klement, Lenka Pavlů, Radka Kodešová, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.