Have a personal or library account? Click to login
Field-scale assessment of the unsaturated hydraulic properties of residual soils in southeastern Brazil Cover

Field-scale assessment of the unsaturated hydraulic properties of residual soils in southeastern Brazil

Open Access
|May 2022

References

  1. ABNT, 2016a. Soil - granulometric analysis: procedure. NBR 7181. Brazilian Association of Technical Standards.
  2. ABNT, 2016b. Soil - preparation for compaction and characterization tests. NBR 6457. Brazilian Association of Technical Standards.
  3. ASTM, 2013. Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper. ASTM D5298-10. Am. Soc. Testing and Materials. DOI: 10.1520/D5298-1010.1520/D5298-10
  4. ASTM, 2016. Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter. ASTM D5084-16a. Am. Soc. for Testing and Materials. DOI: 10.1520/D5084-16A10.1520/D5084-16A
  5. Aydin, A., 2006. Stability of saprolitic slopes: nature and role of field scale heterogeneities. Natural Hazards and Earth System Sci., 6, 89–96. DOI: 10.5194/nhess-6-89-200610.5194/nhess-6-89-2006
  6. Bells, F. (Ed.), 2005. Engineering Geology, Problematic Soils. Elsevier. DOI: 10.1016/B0-12-369396-9/00221-510.1016/B0-12-369396-9/00221-5
  7. Buback, J., 2008. Caracterização físico-química-minerológica e micromorfolóogica de um perfil de alteraçao de rocha alcalina do Rio de Janeiro [Residual soil alkaline origin characterization at the Tangá city, Rio de Janeiro]. MS Thesis. Pontifical Catholic University of Rio de Janeiro, Brazil.
  8. Camargo, J., Velloso, R., Vargas, E., 2016. Numerical limit analysis of three- dimensional slope stability problems at catchment scale. Acta Geotechnica, 11, 1369–1383. DOI: 10.1007/s11440-016-0459-310.1007/s11440-016-0459-3
  9. Carvalho, T., 2012. Desenvolvimento de um sistema de medição de variação de volume total de amostras triaxiais não-saturadas e avaliação do efeito de processos de saturação no comportamento de solos saprolíticos [Development of a total volume change measuring system for unsaturated triaxial samples and evaluation of the effect of saturation procedures on the behaviour of saprolitic soils]. PhD Thesis. Pontifical Catholic University of Rio de Janeiro, Brazil.
  10. Chen, P., Wei, C., Yi, P., Ma, T., 2017. Determination of hydraulic properties of unsaturated soils based on nonequilibrium multistep outflow experiments. J. Geotechn. Geoenviron. Eng., 143, 1, Article Number: 04016087. DOI: 10.1061/(ASCE)GT.1943-5606.000159810.1061/(ASCE)GT.1943-5606.0001598
  11. Fernandes, N.F., Guimarães, R.F., Gomes, R.A.T., Vieira, B.C., Montgomery, D.R., Greenberg, H., 2004. Topographic controls of landslides in Rio de Janeiro: field evidence and modeling. Catena, 55, 163–181. DOI: 10.1016/S0341-8162(03)00115-210.1016/S0341-8162(03)00115-2
  12. Gerscovich, D.M.S., Vargas Jr., E.A, de Campos, T.M.P., 2006. On the evaluation of unsaturated flow in a natural slope in Rio de Janeiro, Brazil. Eng. Geol., 88, 23–40. DOI: 10.1016/j.enggeo.2006.07.00810.1016/j.enggeo.2006.07.008
  13. Gomes, G.J.C., Vrugt, J.A., Vargas Jr., E.A., 2016. Toward improved prediction of the bedrock depth underneath hillslopes: Bayesian inference of the bottom- up control hypothesis using high-resolution topographic data. Water Re-sour. Res., 52, 3085–3112. DOI: 10.1002/2015WR01814710.1002/2015WR018147
  14. Gomes, G.J.C., Vrugt, J.A, Vargas Jr., E.A., Camargo, J.T., Velloso, R.Q., van Genuchten, M.T., 2017. The role of uncertainty in bedrock depth and hydraulic properties on the stability of a variably-saturated slope. Computers & Geotechnics, 88, 222–241. DOI: 10.1016/j.compgeo.2017.03.01610.1016/j.compgeo.2017.03.016
  15. Gomes, R.A.T, Guimarães, R.F., Carvalho, O.A., Fernandes, N.F., Vargas Jr., E.A., Martins, E.S., 2008. Identification of the affected areas by mass movement through a physically based model of landslide hazard combined with an empirical model of debris flow. Natural Hazards, 45, 197–209. DOI: 10.1007/s11069-007-9160-z10.1007/s11069-007-9160-z
  16. Gonçalves, R.D., Teramoto, E.H, Engelbrencht, B.Z., Soto, M.A.A., Chang, H.K., van Genuchten, M.T., 2019. Quasi-saturated layer: Implications for estimating recharge and groundwater modeling. Groundwater, 58, 432–440. DOI: 10. 1111/gwat.1291610.1111/gwat.12916731815931187874
  17. Inoue, M., Šimůnek, J., Hopmans, J.W., Clausnitzer, V., 1998. In situ estimation of soil hydraulic functions using a multi-step soil-water extraction technique. Water Resour. Res., 34, 1035–1050. DOI: 10.1029/98WR0029510.1029/98WR00295
  18. Kassim, A., Gofar, N., Lee, L.M., Rahardjo, H., 2012. Modeling of suction distribution in an unsaturated heterogeneous residual slope. Eng. Geol., 131–132, 70–82. DOI: 10.1016/j.enggeo.2012.02.00510.1016/j.enggeo.2012.02.005
  19. Lacerda, W., 2010. Shear strength of soils derived from the weathering of granite and gneiss in Brazil. Geological Society, London, Eng. Geol. Special Publications 3, 167–182. DOI: 10.1144/EGSP23.1010.1144/EGSP23.10
  20. Li, W.C., Dai, F.C., Wei, Y.Q., Wang, M.L., Min, H., Lee, L.M., 2016. Implication of subsurface flow on rainfall-induced landslide: a case study. Landslides, 13, 1109–1123. DOI: 10.1007/s10346-015-0619-910.1007/s10346-015-0619-9
  21. Liang, W.L., Uchida, T., 2014. Effects of topography and soil depth on saturated-zone dynamics in steep hillslopes explored using the three-dimensional Richards’ equation. J. Hydrol., 510, 124–136. DOI: 10.1016/j.jhydrol.2013.12.02910.1016/j.jhydrol.2013.12.029
  22. Maciel, I., 1991. Aspectos Microestruturais e Propriedades Geomecánicas de um Perfil de Solo Residual de Gnaisse Facoidal [Micro-structural aspects and geomechanical properties of a residual soil profile]. Master’s thesis. Pontifical Catholic University of Rio de Janeiro, Brazil.
  23. Oliveira, C., 2013. Avaliação de mecanismos de ruptura associados aos escorregamentos da Prainha e Condomínio em Nova Friburgo, Rio de Janeiro [Assessment of failure mechanisms of the Prainha and Condomínio landslides, in Nova Friburgo, Rio de Janeiro]. Master’s Thesis. Pontifical Catholic University of Rio de Janeiro, Brazil.
  24. Peranić, J., Arbanas, Z., Cuomo, S., Maček, M., 2018. Soil-water characteristic curve of residual soil from a flysch rock mass. Geofluids. DOI: 10.1155/2018/629781910.1155/2018/6297819
  25. Peranić, J., Moscariello, M., Cuomo, S., Arbanas, Z., 2020. Hydro-mechanical properties of unsaturated residual soil from a flysch rock mass. Eng. Geol., 269, Article Number: 105546. DOI: 10.1016/j.enggeo.2020.10554610.1016/j.enggeo.2020.105546
  26. Peters, A., Iden, S.C., Durner, W., 2015. Revisiting the simplified evaporation method: Identification of hydraulic functions considering vapor, film and corner flow. J. Hydrol., 527, 531–542. DOI: 10.1016/j.jhydrol. 2015.05.02010.1016/j.jhydrol.2015.05.020
  27. Rahardjo, H., Satyanaga, A., 2019. Sensing and monitoring for assessment of rainfall-induced slope failures in residual soil. Proc. Inst. Civil Eng., Geotechnical Engineering 176, 496–506. DOI: 10.1680/jgeen.18.0020810.1680/jgeen.18.00208
  28. Reynolds, W.D., Elrick, D.E., 1986. A method for simultaneous in situ measurement in the vadose zone of field-saturated hydraulic conductivity, sorptivity and the conductivity-pressure head relationship. Ground Water Monitoring & Remediation, 6, 84–95. DOI: 10.1111/j.1745-6592.1986.tb01229.x10.1111/j.1745-6592.1986.tb01229.x
  29. Rosi, A., Canavesi, V., Segoni, S., Nery, T.D., Catani, F., Casagli., N., 2019. Landslides in the mountain region of Rio de Janeiro: A proposal for the semi-automated definition of multiple rainfall thresholds. Geosci., 9, 5, Article Number: 203. DOI: 10.3390/geosciences905020310.3390/geosciences9050203
  30. Schaap, M.G., Leij, F.J., van Genuchten, M.T., 2001. Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol., 251, 163–176. DOI: 10.1016/S0022-1694(01)00466-810.1016/S0022-1694(01)00466-8
  31. Scharnagl, B., Vrugt, J.A., Vereecken, H., Herbst, M., 2011. Inverse modelling of in situ soil water dynamics: investigating the effect of different prior distributions of the soil hydraulic parameters. Hydrol. Earth Syst. Sci., 15, 3043–3059. DOI: 10.5194/hess-15-3043-201110.5194/hess-15-3043-2011
  32. Šimůnek, J.J., van Genuchten, M.T., 1996. Estimating unsatu-rated soil hydraulic properties from tension disc infiltrometer data by numerical inversion. Water Resour. Res., 32, 2683–2696. DOI: 10.1029/96WR0152510.1029/96WR01525
  33. Šimůnek, J.J., van Genuchten, M.T., Gribbs, M.M., Hopmans., J.W., 1998. Parameter estimation of unsaturated soil hydraulic properties from transient flow processes. Soil Tillage Res., 47, 27–37. DOI: 10.1016/S0167-1987(98) 00069-510.1016/S0167-1987(98)00069-5
  34. Šimůnek, J., Kodešová, R., Gribb, M.M., van Genuchten., M.T., 1999. Estimating hysteresis in the soil water retention function from cone permeameter experiments. Water Resour. Res., 35, 1329–1345. DOI:10.1029/1998WR90011010.1029/1998WR900110
  35. Šimůnek, J., van Genuchten, M.T., Šejna, M., 2012. Hydrus: Model use, calibration and validation. Trans. ASABE, 55, 1261–1274. DOI: 10.13031/2013.4223910.13031/2013.42239
  36. Šimůnek, J.J., van Genuchten, M.T., Šejna, M., 2016. Recent developments and applications of the Hydrus computer software packages. Vadose Zone J., 15, 1–25. DOI: 10.2136/vzj2016.04.003310.2136/vzj2016.04.0033
  37. van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892–898. DOI: 10.2136/sssaj1980.03615995004400050002x.10.2136/sssaj1980.03615995004400050002x
  38. Velloso, R.Q., 2000. Estudo Numérico da Estimativa de Parâmetros Hidráulicos em Solos Não Saturados [Numerical Study of the Estimation of Hydraulic Parameters in Partially Saturated Soils]. Master’s Thesis. Pontifical Catholic University of Rio de Janeiro, Brazil.
  39. Vieira, B.C., Fernandes, N.F., 2004. Landslides in Rio de Janeiro: The role played by variations in soil hydraulic conductivity. Hydrol. Proc., 18, 791–805. DOI: 10.1002/hyp.136310.1002/hyp.1363
  40. Vrugt, J.A., van Wijk, M.T., Hopmans, J.W., Šimůnek, J.J., 2001. One-, two-, and three-dimensional root water uptake functions for transient modeling. Water Resour. Res., 37, 2457–2470. DOI: 10.1029/2000WR00002710.1029/2000WR000027
  41. Vrugt, J.A., Schoups, G., Hopmans, J.W., C. Young, W.W., Harter, T., Bouten, W., 2004. Inverse modeling of large-scale spatially distributed vadose zone properties using global optimization. Water Resour. Res., 40, 6. DOI: 10.1029/2003WR00270610.1029/2003WR002706
  42. Vrugt, J.A, Stauffer, P.H., Wöhling, T., Robinson, B.A., Vesselinov, V.V., 2008. Inverse modeling of subsurface flow and transport properties: A review with new developments. Vadose Zone J., 7, 843–864. DOI: 10.2136/vzj2007. 007810.2136/vzj2007.0078
  43. Xia, J., Cai, C., Wei, Y., Wu, X., 2019. Granite residual soil properties in collapsing gullies of south China: spatial variations and effects on collapsing gully erosion. Catena, 174, 469–477. DOI: 10.1016/j.catena.2018.11.01510.1016/j.catena.2018.11.015
DOI: https://doi.org/10.2478/johh-2022-0013 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 244 - 256
Submitted on: Mar 29, 2022
Accepted on: Apr 25, 2022
Published on: May 19, 2022
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Ruan G.S. Gomes, Guilherme J.C. Gomes, Eurípedes A. Vargas, Martinus Th. van Genuchten, João T.M.G. Pinto, Felipe A. Rosa, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.